Appendix E: Town Traffic Model #### Table of Contents: - Traffic Model "Quick Look" Memo - Complete Travel Model Technical Memorandum, Prepared by LSC Transportation Consultants, Inc. - Travel Model Level of Service Reports - Town of Mammoth Lakes Travel Demand Model Description of Model Design Volume Methodology - Mammoth Lakes Transportation Model and LOS Analysis Methodology Paper, prepared by LSC Transportation Consultants, dated May 13, 2005 #### Town of Mammoth Lakes 2010 Traffic Model Quick Look #### **Purpose** The purpose of this modeling effort is to test a variety of possible new roadway connections, mode splits, and land use assumptions and assess the potential impacts the various scenarios may have on the overall transportation system in Mammoth Lakes. #### **Basics** - o 167 Traffic Analysis Zones - Design Day: Typical winter Saturday (average of Saturday ADTs from last 3 winter seasons measured on Main Street at Old Mammoth Road and at Lake Mary/Minaret Road) - o 20-year buildout horizon #### **Existing Conditions Model** The existing (2009) conditions model consists of existing land uses, roadway network, and traffic volumes. Existing traffic volumes are adjusted to reflect the "design day" and the "design day" volumes are used to calibrate the existing conditions model. - Uses existing roadway network - Uses existing land uses (from GIS) - o Comprehensive traffic volume data collected in January 2009 - o 18 intersections (turning movements) - o 21 roadway locations (count stations) #### "Buildout Baseline" Model The "buildout baseline" serves as a starting point from which to test and compare alternatives or scenarios of buildout and how changes to the roadway network, increases in transit ridership, and changes to land use might impact overall traffic volumes. - Existing roadway network - o Buildout "baseline" land uses - o Units: based on PAOT methodology, including approved projects - o Commercial/Industrial: - Approved projects - Assumes development of vacant land and redevelopment of some projects at a reasonable level in the Commercial General, Commercial Lodging, and Industrial zones (CG/CL = 0.25 FAR; Ind. 0.90 FAR) #### Buildout Alternative Models (1 through 5) Model alternatives were developed to represent a "layered" approach to future roadway network and land use changes, as described below. Table 1 provides a more detailed description of the model alternatives and Figure 1 illustrates the proposed roadway network additions. - Alternative 1 Models buildout "baseline" land uses with new streets that are anticipated to be implemented with new development. - Alternative 2 Models buildout "baseline" land uses with all new streets that would be anticipated to be constructed as part of the complete circulation network as recommended Morriss 1 12/8/2010 - by the Downtown Neighborhood District Planning Concept (DNDP) and Mobility Plan. (This alternative maintains the Main Street Frontage Roads) - Alternative 3 Same as above Alterative 2; however, the Main Street Frontage Roads are removed. - Alternative 4 Same as Alternative 3; however, the land use assumptions are increased to include additional residential and commercial space possible under the DNDP. - O Alternative 5 Same as Alternative 4; however, an additional transit line is added to Minaret Road to serve planned development. #### Results Preliminary intersection Level of Service (LOS) results are provided in Table 2. As shown, all existing *signalized* intersections operate at an acceptable LOS (LOS D or better) under current conditions and are expected to maintain an acceptable LOS under all future alternatives. LOS at the existing signalized intersections appears to improve modestly with the addition of new roadway links and transit service as modeled under the alternatives and there does not appear to be a significant impact to signalized intersection LOS under Alternatives 4 and 5, in which increased land use along Main Street associated with the DNDP was modeled. However, as shown in Table 2, a number of existing *unsignalized* intersections currently operate, or are close to operating, at an unacceptable LOS (LOS D or worse), particularly along Main Street and Old Mammoth Road. The LOS for many of these intersections is expected to worsen under future buildout "baseline" conditions and to remain at unacceptable levels of service under all alternatives, even with the addition of new roadway links and transit service, if intersection improvements are not implemented (e.g. installation of roundabouts or signals). # PREFERRED ALTERNATIVE: CIRCULATION NETWORK #### **Town of Mammoth Lakes** #### **Table 1: Buildout Traffic Model Alternatives** | | Alt. | Description | Future Roadway | Future Land Use | Other | |---|--|--|---|--|---------------------| | | | _ | Network | Assumptions | Assumptions | | X | Buildout "Baseline" + Existing Network | This alternative models buildout with the existing roadway network. Land use assumptions are based on PAOT and traffic model for residential uses and commercial/industrial land uses. | Existing network | Residential: use PAOT assumptions for units and rooms. Commercial: Approved projects + 0.25 FAR for vacant/redevelopment land in CG/CL zones Industrial: 0.9 FAR for vacant land in Industrial zone | Transit share = 14% | | 1 | Buildout "Baseline" + "Future Development Roads" | This alternative models the existing roadway network plus roads that are reasonably expected to be built with future development. (The frontage roads are maintained in this alternative.) Land use assumptions are the same as above. | Existing network plus Future Development Roads | Same as above | Transit share = 14% | | 2 | Buildout "Baseline" + "Complete Circulation Network" | This alternative models the existing roadway network plus roads that are recommended in the DNDP/Mobility Plan Complete Circulation Network. (The frontage roads are maintained in this alternative.) Land use assumptions are the same as above. | Existing network plus "Complete Circulation Network" | Same as above | Transit share = 14% | | 3 | Buildout "Baseline" + "Complete Circulation Network" (No Frontage Roads) | This alternative models the existing roadway network plus roads that are recommended in the DNDP/Mobility Plan Complete Circulation Network. The frontage roads are removed in this alternative. Land use assumptions are the same as above. | Existing network
plus "Complete
Circulation
Network" –
Frontage Roads | Same as above | Transit share = 14% | Morriss 1 12/8/2010 | | Alt. | Description | Future Roadway | Future Land Use | Other | |----|--------------|---|---------------------|--|-----------------| | | T | | Network | | Assumptions | | | Buildout | This alternative models the existing roadway | Existing network | o Additional units/rooms and | Transit share | | | "DNDP" + | network plus roads that are recommended in | plus "Complete | commercial square footage | = 13% | | | "Complete | the Mobility Plan/DNDP Complete | Circulation | available due to ROW | (transit share | | | Circulation | Circulation Network. The frontage roads are | Network" minus | relinquishment in DNDP Study | decreased | | | Network" | removed in this alternative. | Frontage Roads | Area (4 acres/175,000 sq. ft. | slightly due to | | | (No Frontage | T 1 1 | | additional) between Manzanita and | increased land | | | Roads) | Land use assumptions are increased from the alternatives above to include rooms/units | | Sierra Park). Residential: Additional 320 | use) | | | | | | rooms possible at 80 rpa | | | 4 | | and commercial space possible under the DNDP. | | Commercial (CG/CL): 175,000 | | | • | | DNDI. | | sq. ft additional. Need to | | | | | | | determine appropriate FAR. | | | | | | | o RV Park – New Sports/Events Park | | | | | | | o FS Compound – New Civic Center, | | | | | | | Retail and MF Res units | | | | | | | ■ 30,000 sq. ft. additional retail | | | | | | | ■ 82 MF units | | | | | | | o Industrial: 0.9 FAR for vacant land | | | | | | | in Industrial zone | | | | Buildout | Roadway network is the same as Alternative | Same as Alternative | Same as Alternative 4 | Transit Share | | | "DNDP" + | 4, but transit ridership is increased by adding | 4 with additional | | = 18 % | | | "Complete | a transit line to Minaret Road from | transit | | | | 1_ | Circulation | Snowcreek to Main Lodge and increasing | | | | | 5 | Network" | frequency on existing lines. | | | | | | (No Frontage | | | | | | | Roads) + | Land use assumptions are the same as | | | | | | Increased | Alternative 4. | | | | | | Transit | | | | | Morriss 2 12/8/2010 Table 2 Future Alternatives Comparison - Intersection Level of Service Results⁽¹⁾ | Intersection | Exi | sting | Base | Future | Alter | native 1 | Alter | native 2 | Alter | native 3 | Alteri | native 4 | Alteri | native 5 | |---|-------------|----------------------------|-------------|------------------------------|-------------|------------------------------|-------------|----------------------------|-------------|------------------------------
-------------|------------------------------|-------------|---------------------------| | Signalized | Overall LOS | Overall Delay (sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | Overall LOS | Overall Delay (sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | Overall LOS | Overall Delay (sec./veh.) | | Lake Mary Road/Canyon Boulevard | A | 9.2 | А | 8.8 | А | 9.4 | Α | 9.4 | Α | 9.2 | Α | 9.4 | A | 9.1 | | Main Street/Minaret Road | С | 29.7 | D | 37.2 | С | 33.4 | С | 32.6 | С | 32.7 | С | 33.8 | С | 31.8 | | Main Street/Old Mammoth Road | В | 14.3 | В | 14.8 | В | 14.5 | В | 14.1 | В | 14.0 | В | 14.0 | В | 14.2 | | Meridian Boulevard/Minaret Road | В | 15.5 | С | 22.0 | С | 22.0 | С | 21.2 | С | 20.9 | С | 21.3 | С | 20.2 | | Meridian Boulevard/Old Mammoth Road | В | 19.7 | С | 22.6 | С | 21.9 | С | 22.1 | С | 20.9 | С | 22.1 | С | 21.9 | | | | Critical | Critical | Approach | | Approach | Delay | Unsignalized | LOS | (sec./veh.) ⁽²⁾ | LOS | (sec./veh.) | LOS | (sec./veh.) | | Minaret Road/Forest Trail | F | 0.37 | F | 1.24 | F | 0.94 | F | 1.02 | F | 1.03 | F | 0.91 | F | 0.76 | | Lake Mary Road/Davison Road/Kelley Road | В | 12.9 | В | 14.4 | В | 14.4 | В | 14.9 | В | 14.7 | В | 14.9 | В | 14.2 | | Main Street/Mountain Boulevard | D | 32.2 | F | 1.30 | F | 2.25 | F | 1.85 | F | 2.67 | F | > 7.00 | F | 5.64 | | Main Street/Center Street | D | 31.9 | F | 1.19 | F | 7.60 | F | 6.75 | F | 1.44 | F | 1.66 | F | 1.55 | | Main Street/Forest Trail | F | 1.17 | F | 2.09 | F | 1.74 | F | 1.68 | F | 1.88 | F | 2.76 | F | 2.42 | | Main Street/Laurel Mountain Road | F | 0.87 | F | 1.46 | F | 1.08 | F | 0.87 | F | 0.94 | F | 1.86 | F | 1.37 | | Main Street/Sierra Park Road/Sawmill Cutoff | В | 13.4 | С | 16.3 | С | 16.5 | С | 16.5 | С | 16.3 | С | 16.9 | С | 16.9 | | Old Mammoth Road/Tavern Road | С | 23.9 | E | 47.9 | F | 0.55 | С | 23.8 | D | 28.6 | F | 0.60 | D | 34.6 | | Old Mammoth Road/Sierra Nevada Road | E | 35.4 | F | 1.00 | F | 0.66 | F | 0.54 | F | 0.55 | F | 0.84 | F | 0.77 | | Meridian Boulevard/Majestic Pines Drive | В | 11.0 | В | 14.4 | В | 14.2 | В | 14.0 | В | 14.0 | В | 14.1 | В | 13.8 | | Meridian Boulevard/Sierra Park Road | Α | 8.2 | Α | 8.4 | Α | 8.4 | Α | 8.4 | Α | 8.3 | Α | 8.3 | Α | 8.3 | | Old Mammoth Road/Chateau Road | С | 18.6 | F | 0.67 | F | 0.59 | D | 32.0 | D | 30.6 | E | 42.7 | E | 40.3 | | Old Mammoth Road/Minaret Road | В | 14.5 | F | 6.44 | F | 1.27 | F | 1.07 | F | 1.18 | F | 1.26 | F | 1.10 | Notes Town of Mammoth Lakes General Plan ⁽¹⁾ Performed in the Synchro capacity analysis software using the 2000 Highway Capacity Manual methodology. ⁽²⁾ For unsignalized intersections with a Level of Service "F", critical approach volume-to-capacity ratio is reported instead of delay. # Town of Mammoth Lakes Travel Model # Town of Mammoth Lakes Travel Model Final Report #### Prepared for: Town of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, CA 93546 (760) 934-8989 #### Prepared by: LSC Transportation Consultants, Inc. 516 North Tejon Street Colorado Springs, CO 80903 (719) 633-2868 LSC #084870 February 15, 2011 ## **TABLE OF CONTENTS** | <u>Cha</u> | pter | Title | Page | |------------|--|--|--| | I | Overview of the Mo
Model Study Area
Model Design and
Calibration Yea
Horizon Years
Trip Purposes | deling Process Purpose r nter 2009 Design Volumes | I-1 I-3 I-4 I-4 I-5 I-5 | | II | Introduction Road Network and Facility Types . Capacity Traffic Analysis Intersections . Transit Network . Existing Land Use Zoning and Lan Households and Employment . Recreational | Zonal Structure Zone Structure Data d Use Districts d Population Input Table | II-1 II-2 II-2 II-5 II-9 II-10 II-13 II-18 II-18 II-19 | | III | Introduction
Production and Att
Trip Generation Va
Home-Based Tr | N | | | IV | Introduction Trip Distribution T Friction Factors . K-Factors Trip Distribution R Trip Length Fre | heory lesults quency Distributions by Trip Purpose Distribution Results | IV-1 IV-1 IV-2 IV-4 IV-7 | | V | Introduction
Mode Split Method
Results | ology | V-1
V-1
V-4 | | VI | ASSIGNMENT | VI-1 | |------|---|--------| | | Introduction | VI-1 | | | Assignment Methodology | VI-1 | | | Roadway Assignment | | | | All-Day Traffic Assignment | VI-2 | | | Peak-Hour Traffic Assignment | | | | Transit Assignment | | | VII | FUTURE YEAR MODEL VALIDATION | VII-1 | | | Introduction | | | | Network Stability | | | | Trip Generation | | | | Trip Distribution | | | | Mode Split | | | | Assignment | | | | Future Traffic Assignment Results | | | | Daily Traffic Assignment Results | | | | Peak-Hour Traffic Assignment Results | | | | Future Transit Assignment | | | | Summary | | | | Summary | VII-10 | | VIII | FUTURE SCENARIO RESULTS | | | | Description of Scenarios/Changes to the Future Base Model | VIII-2 | | | Scenario 1 | VIII-2 | | | Scenario 2 | VIII-2 | | | Scenario 3 | VIII-2 | | | Scenario 4 | VIII-6 | | | Scenario 5 | VIII-6 | | | Model Results | VIII-7 | | | Peak-Hour Link Volumes and Volume-to-Capacity Ratios | VIII-7 | | | Peak-Hour Intersection Level of Service | | APPENDIX A: Existing Land Uses APPENDIX B: Future Land Uses APPENDIX C: Mammoth Lakes Travel Demand Model User's Guide APPENDIX D: Land Use Assumptions #### **LIST OF TABULATIONS** | <u>Table</u> | Title | Page | |--|--|--| | II-1
II-2
II-3
II-4
II-5
II-6
II-7
II-8
II-9 | Road Network Characteristics Intersection Listing Transit Network Characteristics Population Growth Trends (1970-2008) Housing Units by Type (1990-2008) Employment by Industry - 2000 Employment by Industry - 2008 Skier Capacity Assumptions - 2009 Total Land Uses By Land Use Code (2009) | . II-9
II-10
II-18
II-19
II-20
II-20
II-21 | | III-1 | Daily Person-Trip End Production/Attraction Proportions by | | | III-2
III-3
III-4
III-5
III-6
III-7 | Trip Purpose | . III-5
. III-6
. III-7
. III-8
III-10 | | III-8 | Vehicle Availability | | | III-9 | Household Size | | | III-10 | Households by Income | | | IV-1
IV-2
IV-3
IV-4 | Mammoth Slopes K-Factor Adjustment Results | . IV-8
IV-11 | | V-1
V-2
V-3
V-4 | Observed Mode Split at Ski Gateways | . V-4
. V-6 | | VI-1
VI-2
VI-3
VI-4
VI-5
VI-6 | Point Validation Error Range - Daily | . VI-4
. VI-7
VI-10
VI-11 | | VII-1
VII-2
VII-3 | Population Growth Trends (1970-2030) | VII-4 | | VII-4
VII-5 | Saturday District-to-District Person-Trip Distribution Results - 2030
Saturday District-to-District Person-Trip Distribution Results -
Change from 2009 to 2030 | | |--|---|--| | VII-6
VII-7
VII-8 | 2030 Mode Choice By Trip Purpose | VII-11
VII-11 | | VII-9
VII-10 | Peak-Hour Vehicular Assignment Comparison - Base vs. Future Buildout | | | VIII-1
VIII-2
VIII-3 | Buildout Traffic Model Alternatives for LSC Contract Future Alternatives Comparison - Segment Capacity Future Alternatives Comparison - Intersection Level of Service Results | VIII-11 | | | LIST OF ILLUSTRATIONS | | | <u>Figure</u> | Title | Page | | I-1 | Existing Saturday Daily Traffic Volumes | I-7 | | I-2
I-3 | Existing Saturday Peak-Hour Traffic Volumes Existing Saturday (Adjusted to Peak Winter Saturday) Daily Traffic Volumes | | | I-4 | Existing Saturday (Adjusted to Peak Winter Saturday) Peak-Hour Traffic Volumes | | | II-1
II-2
II-3
II-4
II-5 | Town of Mammoth Lakes Network Capacity 2009 | II-7
. II-11
. II-15 | | IV-1
IV-2
IV-3
IV-4
IV-5
IV-6
IV-7
IV-8 | Friction Factor Curves Town of Mammoth Lakes Neighborhood Districts Trip Length Frequency Distribution HBW Trip Length Frequency Distribution Town of Mammoth Lakes Main Lodge Trip Origins Town of Mammoth Lakes Canyon Lodge Trip Origins Town of Mammoth Lakes Eagle Lodge Trip Origins Town of Mammoth Lakes North Village Trip Origins | IV-3
IV-5
. IV-10
. IV-12
. IV-15
. IV-16 | | V-1
V-2
V-3
V-4 | Recreation Trip Mode Split Curve | V-2
V-5 | | VI-1 | Town of Mammoth Lakes 2009 Typical Winter Saturday Daily Traffic Assignment | VI-9 | | VI-2 | Town of Mammoth Lakes 2009 Typical Winter Saturday Peak-Hour Traffic Assignment | . VI-16 | | VII-1 | Mammoth Lakes Permanent Resident Growth Forecasts VII-2 | |--------|--| | VII-2 | 2030 Trip Length Frequency Distribution VII-8 | | VII-3 | Town of Mammoth Lakes 2030 Transit Share by TAZ VII-10 | | VII-4 | Town of Mammoth Lakes 2030 Typical Winter Saturday Daily | | | Traffic Assignment VII-14 | | VII-5 | Town of Mammoth Lakes 2030 Typical Winter Saturday Peak-Hour | | | Traffic Assignment
VII-17 | | | | | VIII-1 | Future Circulation Network | # Chapter I #### **CHAPTER I** ## Introduction This report documents the development of a computer-based transportation model for the Town of Mammoth Lakes, California. In addition to documenting the model itself, this report also presents an explanation of the development of land use quantities used in the model. The Town of Mammoth Lakes had previously used the TRANPLAN modeling software, which was updated through 1998. For this project, a new model development effort has been completed using the TransCAD modeling software, borrowing some information from the previous model as described below. The purpose of this model is to be able to test and assess changes to land use and the transportation system, and to thereby inform decision making for the benefit of the Town of Mammoth Lakes. The model is designed and intended for those types of decisions that go beyond site-level traffic impact studies usually required as part of the development review process. The model uses winter traffic levels as the basis for analysis. #### **OVERVIEW OF THE MODELING PROCESS** A transportation network model is a computerized representation of the transportation system. A model is useful for comparing the impacts of various growth assumptions and for evaluating alternative transportation improvement programs. Although it would also be possible to use growth factors based on recent trends to project future traffic and transit volumes, a model allows the use of better projections of growth within the area, accounting for subarea development. Computerized transportation models are also the best means by which to evaluate the flow of traffic between various land uses and to consider the effects of traffic congestion on travel times and driver route choice. Among the various computer software modeling packages, the TransCAD software package was selected for the Town of Mammoth Lakes model as it provides the necessary modeling capabilities while providing GIS opportunities that can be used to coordinate transportation and land use planning and to better communicate the results of the traffic analyses in graphic form. In addition, it is well supported by its developer and is being used by many other agencies in the region. Transportation models, by definition, are representations of travel choices made by individuals across a geographic area, impacting physical structures such as roads, bridges, parking areas, and intersections. Each model should rely on sound behavioral theory of how individuals make travel choices. The structure of choice sequences suggested by the model and the variables used in the model should reflect a logical process of decision making followed by travelers in deciding when, where, and how to travel. The travel choices of individuals are most commonly represented in the United States by what is referred to as the "four-step process." These four steps represent the thought process of the individual, who makes four travel decisions as follows: (1) the decision that a trip is necessary to fulfill some need or purpose (trip generation), (2) the decision where that need/purpose is best fulfilled (trip distribution), (3) the decision as to which means is best to get there (mode choice), and (4) the decision about which route to take (trip assignment). Trip generation is described in Chapter III, trip distribution in Chapter IV, mode choice in Chapter V, and trip assignment in Chapter VI. Geographic patterns are represented by data considered to be at the heart of individual travel decisions—where people live, where people work, and where people recreate, shop, or otherwise interact. The specific data proposed for use in this project are discussed more fully below. Land use quantities are represented by a series of Traffic Analysis Zones (TAZs). A total of 167 TAZs and three external stations were defined to encompass the model area. TAZs were generally defined to follow property lines and to accurately reflect vehicular access to/from the roadway network. As discussed in detail below, land use quantities were developed to reflect existing uses within each TAZ. The physical structures of travel are represented through a combination of links (paths) and nodes (intersections or transfer points). Zone centroids are special types of nodes associated with both the TAZ data mentioned above and the origins and destinations of an individual's trips. The links typically have a travel time associated with them, either explicitly given or inferred from speed and distance information. As with any representation of a real system, there are associated limitations. To minimize the effects of these limitations, the model is "calibrated" so that it matches reality for all critical links in the system. In other words, adjustments are made until the modeled traffic volumes approximate existing traffic volumes, often referred to as "ground counts." Once the model is calibrated, then and only then can the model be used to estimate future travel patterns and volumes. #### **MODEL STUDY AREA** The model was developed to encompass the Town of Mammoth Lakes in western Mono County. This includes portions of State Route (SR) 203 but does not include US 395. SR 203 becomes Main Street in town. The other major roads in the model are Minaret Road, Old Mammoth Road, and Meridian Boulevard. The study area includes the following major ski base areas: - Eagle Lodge - · Canyon Lodge - Main Lodge (including the Mill Café area) - North Village The study area has the following external nodes: - SR 203/Mammoth Scenic Loop north of Minaret Road - SR 203 east of Meridian Boulevard and just west of US 395 - Minaret Road just west of the Main Lodge Four other external nodes were considered but deemed unnecessary for a winter model. (See more below for discussion of the winter model design volumes.) The following roads are closed or have very little traffic in the winter. - Sawmill cutoff north of SR 203/Main Street - · Mammoth Creek Road east of Old Mammoth Road - Sherwin Creek Road east of Old Mammoth Road - · Lake Mary Road south of Old Mammoth Road #### **MODEL DESIGN AND PURPOSE** Each travel model has an intended purpose, with a base year to which the model is calibrated, and a future year toward which the model is intended to forecast. This travel model is intended to represent a typical winter Saturday under daily and peak-hour conditions. The model is intended to provide information about link volumes and intersection approach volumes. The model is also intended to provide information about transit boardings on a route and system level. Although the approach volumes at intersections can be used in this manner, the travel model is not intended to specifically represent or produce turning count movement forecasts. Link volumes are inclusive of both roadway and transit route link volumes. Although the model can be used to estimate volumes of boardings at specific transit stops, it is not intended to be completely accurate at this level for all routes. The model is, however, intended to be fairly accurate for the ski base areas and downtown so that parking, congestion, and mode splits are useful in these key locations. #### Calibration Year The base year for the model is 2009. Transportation and land use data from 2007 through 2009 have been used to calibrate the model and to adjust collected traffic data to the "design day." The 2009 volumes that were collected were adjusted slightly higher than actual to account for trend line growth occurring in most recent years but not 2009 due to the downturn in national, state, and local economies. The remainder of this chapter sets the targets for calibration. Chapters II through V describe the calibration process. Then Chapter VI shows how well the model matches the base year calibration targets. #### **Horizon Years** The model is intended to be used to forecast a "buildout" horizon year of 2030 or 2035 as determined by the Town of Mammoth Lakes. With the base year calibration complete and those results reviewed, future forecasting was undertaken. Additional checking for reasonableness was conducted to verify that each of the model's four steps were producing results within the bounds of expected rates of growth in population, employment, skier visits, and other community indicators of travel as described in the Model Inputs chapter. The future-year reasonableness checks are presented in Chapter VII. #### **Trip Purposes** This travel model uses the following five trip purposes to describe the trip-making characteristics of individuals in Mammoth Lakes: - H-REC (home-based recreation) - H-S (home-based shopping) - H-W (home-based work) - H-O (home-based other) - O-O (other trips) All home-based trips start or end at the home. In other words, the purpose of the trip is to fulfill a need for the home, irrespective of the direction of the trip, whether from home to a destination, or the reverse, from a destination to home. For the model, home-based recreation is primarily a trip with skiing at one end and the home at the other end of the trip. Home-based shopping trips are primarily a trip with a retail store at one end and the home at the other end of the trip. Home-based work trips, are trips between work and home or home and work. Home-based other trips have a governmental, commercial, industrial, service, or other purpose at one end, with the home at the other end of the trip. Examples of home-based other trips may include, but are not limited to, trips to the post office, the auto mechanic, a lawyer or accountant, a doctor or dentist, or similar trips. The O-O trips fulfill a purpose not associated with the home at either end of the trip. These trips are sometimes called non-home-based (NHB) trips. Going to lunch from work is a O-O trip because it fulfills the need to continue working. Going to the gas station between errands fulfills the need to continue
making trips. #### **DEVELOPMENT OF WINTER 2009 DESIGN VOLUMES** A crucial step in development of a traffic model is determining the appropriate level of traffic volumes to use as the basis for the design of the model. This is particularly challenging in areas that experience large variations in traffic levels, such as in Mammoth Lakes where traffic volumes vary greatly by time of day, day of week, and by season depending on visitation trends. To avoid the development or expansion of facilities that are needed only a relatively few days per year, or hours per year, it is standard practice to use a design volume level that is slightly less than the absolute peak traffic volume. In order to accomplish this, the Town of Mammoth Lakes uses the concept of the "typical winter Saturday peak hour" as the basis for the design of facilities. While daily traffic volumes in Mammoth Lakes are sometimes the highest in the summer months, the highest peak-hour volumes are typically experienced on winter Saturdays, during the afternoon hours when skiers "download" from the Mammoth Mountain Ski Area. Existing 2009 winter Saturday design volumes for the study were developed through a sequence of steps. Weekday and Saturday 24-hour traffic counts were conducted at a total of eight locations throughout the Town of Mammoth Lakes. These counts were "tube counts" intended to obtain volumes in each direction of a road link (link volumes) between intersections. These counts were conducted from Wednesday, January 28, 2009 to Wednesday, February 4, 2009. These data were supplemented with 24-hour traffic counts taken by the Town's permanent count stations. A total of 13 additional 24-hour counts were obtained for a total of 21 locations. A map showing the location and Saturday 24-hour volume at each location is presented in Figure I-1. #### Introduction In addition to the 24-hour traffic counts, weekday and Saturday peak-hour intersection traffic counts were conducted at a total of 18 intersections on Friday, January 30, 2009 and Saturday, January 31, 2009. Intersection counts, also known as turning movement counts, are intended to show how many people make turns (left or right) or continue through an intersection without turning. A map showing the location of these intersections and the peak-hour volumes observed at each is presented in Figure I-2. Town of Mammoth Lakes General Plan Introduction (This page intentionally left blank.) To develop the travel demand model design hour, daily traffic volumes for each Saturday during the three recent winter seasons (06/07, 07/08, 08/09) were obtained from Caltrans' permanent count stations at two major intersections on Main Street (Old Mammoth Road, Lake Mary/Minaret Road). The volumes from each Saturday during these three winter seasons were averaged to determine the average daily traffic volume on Main Street during a "typical winter Saturday." The average daily volume was then compared to the average volume that occurred during the date of the Town's most recent extensive and comprehensive traffic volume survey, which occurred on Saturday, January 31, 2009 at all major intersections and roadway segments within Mammoth Lakes. This comparison was used to develop a "factor" of 1.07, which was applied to the collected intersection and roadway segment volumes which were reported in Figures I-1 and I-2. The adjusted volumes are reported in Figures I-3 and I-4. The adjusted volumes are used to calibrate the travel demand model so that it more accurately represents a "typical winter Saturday." It should also be noted that, consistent with standard analysis procedures elsewhere, level of service and capacity were not adjusted to account for snow conditions. The occurrence of stormy/snowy weather conditions and snow on the roadways occurs over a relatively small proportion of the winter and vehicle traffic generally decreases significantly in inclement weather conditions. Furthermore, it would be speculative to try to determine the impact to roadway capacity resulting from stormy conditions, as conditions are unique to each storm, as is driver behavior. This approach is consistent with other traffic analyses and travel demand models that LSC has prepared in similar areas with high annual snowfall, such as the Lake Tahoe region; Park City, Utah; and Aspen, Colorado. Town of Mammoth Lakes General Plan # Chapter II ## **Model Inputs** #### INTRODUCTION This chapter reviews the input data used by and acted on by the four components of the travel demand model. Road and transit networks are defined and given performance characteristics. These characteristics answer questions about how (i.e., speed, direction, distance/length) trips move from place to place and how many trips can be accommodated on any given link. Existing (and future) land uses describe how many homes, jobs, shops, and other community opportunities exist in each place. Some additional data are also included to show how the final land use input table relates to other existing community information. #### ROAD NETWORK AND ZONAL STRUCTURE The transportation network in a travel demand model is a simplified representation of the real world. While it is simplified, it should contain all of the transport options available for individuals in order to have useful forecasting properties. The model represents the actual network as a series of links and nodes. TransCAD's mapping database was used to code the following data: - Link speeds (free-flow based on posted speed limits) - Directions of travel (one- or two-way) - Link capacity (the product of lane capacity and number of lanes) - · Location of the end nodes - Other attribute data (street name, classification, surface, other) An existing link network in GIS format was obtained from the Town of Mammoth Lakes. This network was carefully reviewed to ensure a complete network that represents the study area roadway network and to remove minor unpaved roads not used for through traffic. #### **Facility Types** This road network was then classified into nine facility types. While default values were identified for each type, changes from these default values were made as part of the calibration process (as discussed below) to reflect differences in conditions, especially speeds in more congested areas or where site visits indicate speeds deviate substantially from posted speeds. However, the default values of each roadway type are shown in Table II-1. | | Table II-1
Road Network Characteristics | | | | | | | | | | |-------|--|----------------------------|-------------------------------|----------------|-------------------------|-------------------------|--|--|--|--| | No. | Facility Type | Daily
Capacity
(ADT) | Hourly
Capacity
(vphpl) | Speed
(mph) | # Links of
Each Type | % Links of
Each Type | | | | | | 0 | Centroid
Connector | n/a | n/a | 25 | 194 | 18.7% | | | | | | 1 | Highway | 15,000 -
32,000 | 800 | 50-55 | 16 | 1.5% | | | | | | 2 | Arterial | 5,000 -
32,000 | 500-800 | 40-50 | 127 | 12.2% | | | | | | 3 | Collector | 4,000 -
5,000 | 400-500 | 25-40 | 147 | 14.2% | | | | | | 4 | Local | 2,500 -
5,000 | 250-500 | 25-40 | 421 | 40.6% | | | | | | 5 | County Road | 4,000 | 400 | 25 | 27 | 2.6% | | | | | | 6 | Other | 4,000 | 400 | 25 | 16 | 1.5% | | | | | | 7 | Private | 4,000 | 400 | 25 | 31 | 3.0% | | | | | | 8 | Alley | 4,000 | 400 | 25 | 10 | 1.0% | | | | | | 9 | USFS Route | 4,000 | 400 | 25 | 49 | 4.7% | | | | | | Total | Total 1,038 100.0% | | | | | | | | | | Notes: vphpl = vehicles per hour per lane, mph = miles per hour, ADT = average daily traffic in all travel lanes both directions. Source: LSC, 2010. #### Capacity Figure II-1 presents the capacity of the Town of Mammoth Lakes' model roadway network. These values are based upon standard values employed by the traffic engineering profession and are consistent with the values used in the previous versions of the model. The roadways with the greatest capacities are Meridian Boulevard and State Highway 203, which are coded to have capacities equal to 7,000 to 16,000 vehicles per day per direction. The next highest capacity roadways are Old Mammoth Road and Minaret Road, which are assumed to have capacities between 3,500 and 7,500 vehicles per day per direction. The remaining roadways are coded to have capacities that are less than 4,500 vehicles per day per direction. Most of the lower capacity roadways are collectors or local streets. The centroid links are shown in gray on Figure II-1. The capacity on the centroid links is considered to be unlimited. This is because centroid connectors represent a network of smaller roadway facilities for which the model is not intended to forecast. They are given unlimited capacity so there is no congestion or limit to flows on these facilities. These smaller roadway facilities include some local roads, alleys, and driveways. #### **Traffic Analysis Zone Structure** The next step in updating the Town of Mammoth Lakes' travel demand model was to review the existing model network and Traffic Analysis Zones (TAZ). The model network was last updated in 2005. Thus, a review was warranted to assure the current accuracy of the network input within the modeling process. The LSC team worked with the Town of Mammoth Lakes planning staff to determine the network revisions required in order to match the current network conditions. Based on this effort, the number of TAZs was increased from 152 to 167. The new TAZs were created to better represent certain areas in the new model. Specifically, the following areas were refined: - Commercial parcels south of Lake Mary Road and west of Minaret Road. - The area east of Old Mammoth Road and south of Meridian Boulevard including the Cerro Coso Community College and nearby utility parcels. - Tamarack Lodge. - The area south of Chateau Road and east of Old Mammoth Road. In addition, several other
TAZ boundaries were revised to better separate out different land use types. The revised 2009 zone system, shown in Figure II-2, includes 167 centroid nodes and three external station nodes that correspond to 170 total TAZs. All of the socioeconomic and land use data are attached to the centroid nodes. There are 727 additional nodes where roadway segments connect to each other at intersections, turns, and access points from the adjacent land use developments (centroid nodes). The nodes are connected by 1,038 links that represent the roadway segments within the network. Each link has corresponding attributes that define the roadway in terms of distance, speed, number of lanes, and segment capacity. Model Inputs (This page intentionally left blank.) Town of Mammoth Lakes General Plan Model Inputs (This page intentionally left blank.) #### Intersections Table II-2 provides a list of 24 intersections of interest to the study. For 18 of the intersections, traffic counts were conducted in 2009. Six additional intersections are listed based upon their having been analyzed in prior studies. As the table indicates, there are currently five signalized intersections and one four-way stop-controlled intersection in town. | | Table II-2 | | | | | | | | | | | |--|------------------------------------|--|--|--|--|--|--|--|--|--|--| | | Intersection Listing | | | | | | | | | | | | Roadway Segn | nent Extents | | | | | | | | | | | | North-South Street | East-West Street | Type of Control | | | | | | | | | | | Intersections of Major Roads | | | | | | | | | | | | | Minaret Rd.* | Lake Mary Rd./Main Street | Signalized | | | | | | | | | | | Minaret Rd.* | Meridian Blvd. | Signalized | | | | | | | | | | | Canyon Blvd.* | Lake Mary Rd. | Signalized, 3-Leg | | | | | | | | | | | Old Mammoth Rd.* | Main Street | Signalized, 3-Leg | | | | | | | | | | | Old Mammoth Rd.* | Meridian Blvd. | Signalized | | | | | | | | | | | Forest Trail Between Main Street an | d Minaret Rd. | <u> </u> | | | | | | | | | | | Berner St. | Forest Trail | Stop on Berner St. Leg | | | | | | | | | | | Sierra Blvd. | Forest Trail | Stop on Sierra Blvd Leg | | | | | | | | | | | Main Street Between Sierra Park Ro | d./Sawmill Cutoff and Minaret Rd | <u>.</u> | | | | | | | | | | | Center St.* | Main Street | 2-Way Stop on Center St. | | | | | | | | | | | Forest Trail* | Main Street | 2-Way Stop on Forest Trail | | | | | | | | | | | Laurel Mountain | Main Street | 2-Way Stop on Laurel Mountain | | | | | | | | | | | Mountain Blvd.* | Main Street | Stop on Sierra Blvd Leg | | | | | | | | | | | Sierra Park Rd./Sawmill Cutoff * | Main Street | 2-Way Stop on Sierra Park/Sawmill | | | | | | | | | | | Meridian Blvd. Between SR 203 and | d Minaret Rd. | | | | | | | | | | | | Azimuth Dr. | Meridian Blvd. | 2-Way Stop on Azimuth Dr. | | | | | | | | | | | Majestic Pines Dr.* | Meridian Blvd. | Stop on Majestic Pines Leg | | | | | | | | | | | Sierra Park Rd.* | Meridian Blvd. | 4-Way Stop | | | | | | | | | | | Minaret Rd. Between Main Street ar | nd Mammoth Scenic Loop (SR 2 | 03) | | | | | | | | | | | Minaret Rd.* | Forest Trail | 2-Way Stop on Forest Trail | | | | | | | | | | | Minaret Rd. Between Main Street ar | nd Old Mammoth Rd. | | | | | | | | | | | | Minaret Rd. | Chateau Rd. | Stop on Chateau Leg | | | | | | | | | | | Minaret Rd.* | Old Mammoth Rd. | 2-Way Stop on Minaret Rd. | | | | | | | | | | | Minaret Rd. | Sierra Star | 2-Way Stop on Sierra Star | | | | | | | | | | | Lake Mary Road Between Minaret F | Rd. and Bridge Lane | | | | | | | | | | | | Lake Mary Rd. | Kelly Rd./Davidson | Split Intersection. Stops on both Kelly Rd. and Davidson | | | | | | | | | | | Lake Mary Rd. | Lakeview Blvd. Cutoff | Stop on Lakeview Blvd. Leg | | | | | | | | | | | Old Mammoth Rd. Between Main S | reet and Meridian Blvd. | | | | | | | | | | | | Old Mammoth Rd. | Chateau Rd. | 2-Way Stop On Chateau Rd. | | | | | | | | | | | Old Mammoth Rd.* | Sierra Nevada Rd. | 2-Way Stop On Sierra Nevada Rd. | | | | | | | | | | | Old Mammoth Rd.* | Tavern Rd. | 2-Way Stop On Tavern Rd. | | | | | | | | | | | Source: LSC 2009. *Intersection counts | completed in 2009. See Figure I-2. | | | | | | | | | | | # TRANSIT NETWORK LSC for the number of stops, 2009. Figure II-3 presents the existing bus transit network for the Town of Mammoth Lakes. The Village Gondola is also part of the transit network. The transit networks of previous models had coded the three main routes (Blue, Red, and Green), while this version of the model considers all six. Only daytime service and service frequencies are represented in the model. Table II-3 shows the model data attributed to each route. All services are represented in the model as being farefree. | Table II-3
Transit Network Characteristics | | | | | | | | | | | |---|---------------------|--------------------|----------------|--|--|--|--|--|--|--| | Name of Route Route Color Route Stops Frequency | | | | | | | | | | | | Main Lodge-Village-Snowcreek | Red | 36 | 15 minutes | | | | | | | | | Village-Canyon Lodge | Blue | 17 | 15 minutes | | | | | | | | | Village-Eagle Lodge | Yellow | 14 | 15 minutes | | | | | | | | | Vons-Eagle Lodge | Green | 18 | 15 minutes | | | | | | | | | Village-Tamarack | Orange | 8 | 60 minutes | | | | | | | | | Mid-Town Lift | Maroon | 7 | 30 minutes | | | | | | | | | Village G ond ola | n/a | 2 | 20 seconds | | | | | | | | | Sources: Eastern Sierra Transit. Mammoth | Transit Map, Winter | 2009; Town of Mamn | noth Lakes and | | | | | | | | LSC Town of Mammoth Lakes Transit System - Winter 2009 Mammoth Lakes Model Update Figure II-3 LSC # 084870 Town of Mammoth Lakes General Plan Model Inputs (This page intentionally left blank.) #### **EXISTING LAND USE DATA** The following information about land use data is presented as background to the creation of the final land use input table used in the travel model. Some information is also provided as supporting information for later chapters in this report. # **Zoning and Land Use Districts** Figure II-4 shows the current Mammoth Lakes zoning. This is the color-coded representation of the data attached to the traffic analysis zones. Shown on this map, but excluded from the travel model, are the Lakes Basin open space and the Yosemite Airport. Figure II-5 shows a map of 13 neighborhood districts and three mountain portals. The concept of districts is applied in the validation of the model during the trip distribution step, both to check trip-interchanges between districts as well as continuing the Town's land use planning into the travel model. Model Inputs (This page intentionally left blank.) Town of Mammoth Lakes General Plan Model Inputs (This page intentionally left blank.) # **Households and Population** Tables II-4 and II-5 show relevant sources of data for population and household characteristics within the Town of Mammoth Lakes. These sources contain information that was consolidated and updated for the final land use input table for the travel model. The Town of Mammoth Lakes has since gone through an extensive and comprehensive process to account for existing land uses and to estimate buildout and the associated population. These data were used as the basis for the update of the travel model. The tables below are preserved in this document to show continuity with prior work. Population data show growth from 2000 to 2003, with a leveling or slight decline to 2008. Housing data, in contrast, show a continued increase in the number of dwelling units, amounting to 16 percent over eight years or 1.89 percent compounded average annual growth. | | Table II-4
Population Growth Trends (1970-2008) | | | | | | | | | | | | | |---|--|--------|--------|---------|--|--|--|--|--|--|--|--|--| | Year Population Numerical Average Annual Change | | | | | | | | | | | | | | | rear | Population | Change | Number | Percent | | | | | | | | | | | 1970 | 3,528 | | | | | | | | | | | | | | 1980 | 3,929 | 401 | 40.1 | 1.14% | | | | | | | | | | | 1990 | 4,785 | 856 | 85.6 | 2.18% | | | | | | | | | | | 2000 | 7,094 | 2,308 | 230.8 | 4.82% | | | | | | | | | | | 2003 | 7,495 | 402 | 134 | 1.89% | | | | | | | | | | | 2008 | 7,413 | -82 | -16 | -0.32% | | | | | | | | | | Sources: Census Bureau (2000 Census, SF3: P1) and (1990 Census, STF3: P1), DOF (Report E-5) as presented in the "Town of Mammoth Lakes Housing Element," December 2003; DOF & EDAW 2008 as presented in the "Town of Mammoth Lakes General Plan, Housing Element Draft," January 2009. | Table II-5
Housing Units by Type (1990-2008) | | | | | | | | | | | | | | |---|--------|---------|--------|---------|--------|---------|--|--|--|--|--|--|--| | | 19 | 90 | 200 | 00 | 200 |)8 | | | | | | | | | Housing Unit Type | Number | Percent | Number | Percent | Number | Percent | | | | | | | | | Single-Family Detached | 1,671 | 23.5% | 2,122 | 26.7% | 2,496 | 27% | | | | | | | | | Single-Family Attached | 588 | 8.3% | 965 | 12.1% | 1,132 | 12.2% | | | | | | | | | 2 Units | 325 | 4.6% | 301 | 3.8% | 338 | 3.7% | | | | | | | | | 3-4 Units | 1,300 | 18.3% | 1,239 | 15.6% | | | | | | | | | | | 5-9 Units | 1,310 | 18.4% | 1,169 | 14.7% | | | | | | | | | | | 10-19 Units | 1,018 | 14.3% | 749 | 9.4% | 5,052 | 54.6% | | | | | | | | | 20+ U nits | 655 | 9.2% | 1,220 | 15.3% | | | | | | | | | | | Mobile Homes, Etc. | 235 | 3.3% | 193 | 2.4% | 227 | 2.5% | | | | | | | | | Total | 7,102 | 100.0% | 7,958 | 99.7% | 9,245 | 100.0% | | | | | | | | Sources: Census Bureau (2000 Census, SF 3: H30) and (1990 Census, SF: H20) as presented in the "Town of Mammoth Lakes Housing Element," December 2003; Claritas and EDAW, 2008 as presented in the "Town of Mammoth Lakes General Plan, Housing Element Draft," January
2009. The original data in the 2003 report separated out Mobile Homes from "Boat, RV, Van, Etc." and those data have been combined here. # **Employment** Tables II-6 and II-7 show employment data by industry for 2000 and 2008, respectively. The data are grouped in different categories and are therefore not directly comparable across all categories. The growth between the two years is roughly 800 employees, representing an annual average growth rate of 2.27 percent. | Table II-6
Employment by Industry - 2000 | | | | | | | | | | |---|----------------|---------------|--|--|--|--|--|--|--| | Industry Type | 200 | 00 | | | | | | | | | Industry Type | Num ber | Percent | | | | | | | | | Agriculture, Forestry, Fishing and Hunting, and Mining | 40 | 0.9% | | | | | | | | | Construction | 350 | 8.1% | | | | | | | | | Manufacturing | 113 | 2.6% | | | | | | | | | Wholesale Trade | 77 | 1.8% | | | | | | | | | Retail Trade | 424 | 9.8% | | | | | | | | | Transportation and Warehousing, and Utilities | 60 | 1.4% | | | | | | | | | Information | 46 | 1.1% | | | | | | | | | Finance, Insurance, Real Estate and Rental and Leasing | 166 | 10.8% | | | | | | | | | Professional, Scientific, Management, Administration | 379 | 8.8% | | | | | | | | | Educational, Health and Social Services | 482 | 11.2% | | | | | | | | | Arts, Entertainment, Recreation, and Services | 1,598 | 37.1% | | | | | | | | | Other Services | 117 | 2.7% | | | | | | | | | Public Administration | 161 | 3.7% | | | | | | | | | Total | 4,013 | 100% | | | | | | | | | Source: Census Bureau (2000 Census, SF3: P49 as presented in the "T
Element," December 2003. | own of Mammoth | Lakes Housing | | | | | | | | | Table II-7
Employment by Industry - 2008 | | | | | | | | | | |--|---------|---------|--|--|--|--|--|--|--| | In durature Terms | 20 | 08 | | | | | | | | | Industry Type | Num ber | Percent | | | | | | | | | Management and Professional | 1,662 | 34.6% | | | | | | | | | Service | 1,229 | 25.6% | | | | | | | | | Sales and Office | 1,046 | 21.8% | | | | | | | | | Farming, Fishing, and Forestry | 4 | 0.1% | | | | | | | | | Construction, Extraction, and Maintenance | 535 | 11.1% | | | | | | | | | Production, Transportation, and Material Moving | 325 | 6.8% | | | | | | | | | Total | 4,801 | 100.0% | | | | | | | | | Source: Claritas and EDAW, 2008 as presented in the "Town of Mammoth Lakes General Plan, Housing Element Draft," January 2009. | | | | | | | | | | # Recreational Table II-8 shows the estimated capacity of downhill skiers at one time (SAOT) at each of the four Mammoth Mountain portals. This information was provided by the Town of Mammoth Lakes and is based on the current capacity of Mammoth Mountain. As shown, a total of 24,000 downhill skiers are able to access the mountain at one time. In addition, Table II-8 also shows the number of cross-country skiers at the Tamarack Lodge and Shady Rest Trail areas. Once again, this information was provided by the Town of Mammoth Lakes. As shown, a total of 350 cross-county skiers are estimated to visit these areas during a typical winter Saturday. | Table II-8
Skier Capacity Assumptions - 2009 | | | | | | | | | | | |---|---------------|---------|--|--|--|--|--|--|--|--| | 2009 | | | | | | | | | | | | Ski Area | Number | Percent | | | | | | | | | | Downhill Skiers | | | | | | | | | | | | Main Lodge | 8,000 | 33.3% | | | | | | | | | | Canyon Lodge | 8,000 | 33.3% | | | | | | | | | | Eagle Lodge | 4,000 | 16.7% | | | | | | | | | | The North Village | 4,000 | 16.7% | | | | | | | | | | Total | 24,000 | 100.0% | | | | | | | | | | Cross-County Skiers | | | | | | | | | | | | Tamarack Lodge Area | 200 | 57.1% | | | | | | | | | | Shady Rest Trails 150 42.9% | | | | | | | | | | | | Total 350 100.0% | | | | | | | | | | | | Source: Town of Mammoth Lakes, | January 2009. | | | | | | | | | | # **Final Land Use Input Table** Table II-9 shows the final land use input table, which is used as the base data in the travel model—all 167 zones excluding the external station—aggregated. It is believed that these data are more recent and more accurate than the sources reviewed earlier in this chapter. Appendix A contains the disaggregated, zone-by-zone land use input information. The number of dwelling units is the key input to the model and provides a more realistic representation of traffic and travel demand than using population as a base input. Use of population data would suggest little or no growth since 2000. Some data would show as much as 16 percent growth. The official 2009 estimate for dwelling units represents 8.8 percent growth over 2000 Census data, an intermediate estimate between the extremes. This finding indicates that at the level of trip generation, the first step of the model, input data may have as much as ±five percent variation. | Table II-9 | | | | | | | | | | | |---|--|------------------|-------------|--|--|--|--|--|--|--| | Total Land Uses By Land Use Code (2009) | | | | | | | | | | | | Land Use
Code | Description of Land Use | Quantity | | | | | | | | | | 1 | Residential Low Density (SF) - Resident | DUs | 1,454 | | | | | | | | | 3 | Residential High Density (MF) - Resident | DUs | 4,023 | | | | | | | | | 4 | Mobile Home Park - Resident | DUs | 132 | | | | | | | | | 5 | Residential Low Density (SF) - Visitor | DUs | 627 | | | | | | | | | 7 | Residential High Density (MF) - Visitor | DUs | 2,426 | | | | | | | | | 10 | Lodging (Hotel) - Visitor | Room | 997 | | | | | | | | | 11 | Resort Hotel - Visitor | Room | 976 | | | | | | | | | 13 | Retail/Commercial | KSF | 1,305 | | | | | | | | | 21 | Light Industrial | KSF | 311 | | | | | | | | | 23 | Public Utility | Acres | 49 | | | | | | | | | 31 | Public School | Acres | 832 | | | | | | | | | 32 | High School | Acres | 314 | | | | | | | | | 33 | College | Student | 0 | | | | | | | | | 34 | Hospital | Bed | 21 | | | | | | | | | 36 | PostOffice | PRS | 7,402 | | | | | | | | | 37 | Church | Acres | 14 | | | | | | | | | 39 | Downhill Skiing-Employees | Employee | 2,163 | | | | | | | | | 40 | Downhill Skiing-Skiers | SAOT | 24,000 | | | | | | | | | 41 | Cross-Country Skiing/Snowmobiling | SAOT | 350 | | | | | | | | | | = Dwelling Unit, KSF = Thousand Square Feb.), SAOT = skiers at one time. | et, PRS = postal | receptacles | | | | | | | | Source: Town of Mammoth Lakes, 2009 One area to consider improving is the accounting of single-family versus multifamily dwelling units. Base information—both the Census and Housing Element data—shows 58 to 59 percent multi-family and 39 percent single-family, whereas data provided for the travel model are 74 percent multi-family and 24 percent single-family shares. The difference may be in how attached single-family units (i.e., duplexes and triplexes) are counted. All data sources agree on a two percent mobile home share. # **Chapter III** # **Trip Generation** ### INTRODUCTION Once all the input data are assembled, as described in the previous chapter, trip generation is the first step in the four-step model process. In this step, the land use input quantities are estimated to produce or attract a certain number of trips per unit of land use, per dwelling unit, per thousand square feet of retail space, or per employee. This chapter reviews how the land use quantities and trip rates are used to produce the total number of trips used in later steps of the model. ### PRODUCTION AND ATTRACTION RATES The Town of Mammoth Lakes provided the land use data by traffic analysis zone (TAZ) and land use type. Each land use category has a certain trip rate, defined to be the number of daily person-trips generated by every unit of land use within a TAZ. This trip rate varies by land use category. There are 19 different land use types used in the Town of Mammoth Lakes transportation demand model. As compared to the 2005 model update, the following categories of land use were eliminated by combining them with other related categories: residential medium density - resident, residential medium density - visitor, retail/commercial and town offices measured in acres. Residential dwelling units are now classified as either low or high density, and all retail/commercial/office uses are now measured in thousands of square feet of floor space. The same five trip purposes were used in the development of the 2009 model as were used in 2005. The five trip purposes are: - Home-Based Recreation or "Home to Recreation" (H-REC) - Home-Based Shopping or "Home to Shopping" (H-S) - Home-Based Work or "Home to Work" (H-W) - Home-Based Other or "Home to Other" (H-O) - Other-to-Other (O-O) # Trip Generation Table III-1 shows the trip rates associated with each of the 19 land use types. Also shown are the rate of trips by trip purpose and by whether they are a production or attraction. For example, if a low-density housing unit produces 12.80 trips per day, two of those trips are for shopping (2.048), more than two are for work (2.304), and four are for other trips from the home and so forth (4.096), for the rest of that line. | | Table III-1
Daily Person-Trip End Production/Attraction Proportions by Trip Purpose | | | | | | | | | | | | | | |--|--|------------------|-----------------------------|-------|-------|------------|-------|--------|-------|--------|-------------|--------|--------|--------| | | | | Daily | | P | roductions | i | | | - | Attractions | | | | | Description | Unit | Land Use
Code | Person-
Trip End
Rate | H-REC | H-S | H-W | Н-О | 0-0
| H-REC | H-S | H-W | H-O | 0-0 | TOTAL | | Residential Low Density (SF) - Resident | DUs | 1 | 12.800 | 1.152 | 2.048 | 2.304 | 4.096 | 1.920 | 0.000 | 0.000 | 0.000 | 0.000 | 1.280 | 12.80 | | Residential High Density (MF) - Resident | DUs | 3 | 8.100 | 0.891 | 1.458 | 1.539 | 2.511 | 0.729 | 0.000 | 0.000 | 0.000 | 0.000 | 0.972 | 8.10 | | Mobile Home Park - Resident | DUs | 4 | 5.400 | 0.594 | 0.918 | 1.080 | 1.566 | 0.486 | 0.000 | 0.000 | 0.000 | 0.000 | 0.756 | 5.40 | | Residential Low Density (SF) - Visitor | DUs | 5 | 14.000 | 4.620 | 3.220 | 0.000 | 3.080 | 1.960 | 0.000 | 0.000 | 0.000 | 0.000 | 1.120 | 14.00 | | Residential High Density (MF) - Visitor | DUs | 7 | 11.500 | 3.795 | 2.645 | 0.000 | 2.530 | 1.610 | 0.000 | 0.000 | 0.000 | 0.000 | 0.920 | 11.50 | | Lodging (Hotel) - Visitor | Room | 10 | 12.000 | 4.080 | 2.400 | 0.000 | 1.920 | 1.080 | 0.000 | 0.120 | 0.480 | 0.720 | 1.200 | 12.00 | | Resort Hotel - Visitor | Room | 11 | 12.000 | 4.080 | 2.400 | 0.000 | 1.920 | 1.080 | 0.000 | 0.120 | 0.480 | 0.720 | 1.200 | 12.00 | | Retail/Commercial | KSF | 13 | 60.200 | 0.000 | 0.000 | 0.000 | 0.000 | 8.729 | 6.923 | 15.351 | 3.010 | 20.167 | 6.020 | 60.20 | | Light Industrial | KSF | 21 | 11.200 | 0.000 | 0.000 | 0.000 | 0.000 | 2.834 | 0.000 | 0.000 | 2.598 | 1.221 | 4.547 | 11.20 | | Public Utility | Acres | 23 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | Public School | Acres | 31 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | High School | Acres | 32 | 1.270 | 1.000 | 0.000 | 0.000 | 0.000 | 0.020 | 0.000 | 0.000 | 0.006 | 0.224 | 0.019 | 1.27 | | College | Student | 33 | 2.080 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | 0.006 | 0.062 | 0.002 | 2.08 | | Hospital | Bed | 34 | 17.000 | 3.000 | 0.000 | 0.000 | 0.000 | 3.220 | 0.000 | 0.000 | 1.456 | 6.216 | 3.108 | 17.00 | | Post Office | PRS | 36 | 0.080 | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.000 | 0.000 | 0.002 | 0.031 | 0.024 | 0.08 | | Church | Acres | 37 | 140.000 | 0.000 | 0.000 | 0.000 | 0.000 | 29.540 | 0.000 | 0.000 | 0.000 | 61.320 | 49.140 | 140.00 | | Downhill Skiing-Employees | Employee | 39 | 1.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.465 | 0.000 | 0.000 | 0.450 | 0.120 | 0.465 | 1.50 | | Downhill Skiing-Skiers | SAOT | 40 | 1.600 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.408 | 0.000 | 0.000 | 0.032 | 0.160 | 1.60 | | Cross-Country Skiing/Snowmobiling | SAOT | 41 | 1.900 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.653 | 0.000 | 0.076 | 0.019 | 0.152 | 1.90 | | Source: LSC, 2010. | | | | | | | - | | | | | | | | ### Trip Generation Table III-2 presents the number of trips by land use for both production and attraction totals, inclusive of trips from the external station at SR 203 near US 395. These are the raw, unbalanced result of applying the trip rates by TAZ, by land use, and by production/attraction, then adding the results together. The external stations comprised 29,402 daily person-trips of the total daily person-trip generation of 270,847 or about eleven percent of trips prior to trip balancing. Table III-3 presents the number of trips by trip purpose for both production and attraction totals, inclusive of trips from the external station at SR 203 near US 395. These are the raw, unbalanced results of applying the trip rates by TAZ, by trip purpose, and by production/attraction, then adding the results together. | Unbalance | Table III-2 Unbalanced Daily Person Productions and Attractions by Land Use | | | | | | | | | | | | | | |--|---|------------------|----------|--------------------------------------|-------------|-------------|---------|--|--|--|--|--|--|--| | Description | Unit | Land Use
Code | Quantity | Daily
Person-
Trip End
Rate | Productions | Attractions | Total | | | | | | | | | Residential Low Density (SF) - Resident | DUs | 1 | 1,454 | 12.80 | 16,750 | 1,861 | 18,611 | | | | | | | | | Residential High Density (MF) - Resident | DUs | 3 | 4,023 | 8.10 | 28,676 | 3,910 | 32,586 | | | | | | | | | Mobile Home Park - Resident | DUs | 4 | 132 | 5.40 | 613 | 100 | 713 | | | | | | | | | Residential Low Density (SF) - Visitor | DUs | 5 | 627 | 14.00 | 8,076 | 702 | 8,778 | | | | | | | | | Residential High Density (MF) - Visitor | DUs | 7 | 2,426 | 11.50 | 25,667 | 2,232 | 27,899 | | | | | | | | | Lodging (Hotel) - Visitor | Room | 10 | 997 | 12.00 | 9,452 | 2,512 | 11,964 | | | | | | | | | Resort Hotel - Visitor | Room | 11 | 976 | 12.00 | 9,252 | 2,460 | 11,712 | | | | | | | | | Retail/Commercial | KSF | 13 | 1,305 | 60.20 | 11,391 | 67,170 | 78,561 | | | | | | | | | Light Industrial | KSF | 21 | 311 | 11.20 | 881 | 2,602 | 3,483 | | | | | | | | | Public Utility | Acres | 23 | 49 | 0.00 | 0 | 0 | 0 | | | | | | | | | Public School | Acres | 31 | 832 | 0.00 | 0 | 0 | 0 | | | | | | | | | High School | Acres | 32 | 314 | 1.27 | 320 | 79 | 399 | | | | | | | | | College | Student | 33 | 0 | 2.08 | 0 | 0 | 0 | | | | | | | | | Hospital | Bed | 34 | 21 | 17.00 | 131 | 226 | 357 | | | | | | | | | Post Office | PRS | 36 | 7,402 | 0.08 | 169 | 423 | 592 | | | | | | | | | Church | Acres | 37 | 14 | 140.00 | 414 | 1,546 | 1,960 | | | | | | | | | Downhill Skiing-Employees | Employee | 39 | 2,163 | 1.50 | 1,006 | 2,239 | 3,245 | | | | | | | | | Downhill Skiing-Skiers | SAOT | 40 | 24,950 | 1.60 | 0 | 39,920 | 39,920 | | | | | | | | | Cross-Country Skiing/Snowmobiling | SAOT | 41 | 350 | 1.90 | 0 | 665 | 665 | | | | | | | | | External Station at SR 203 | | | | | 26,412 | 2,990 | 29,402 | | | | | | | | | Subtotal Without External Station | | | | | 112,798 | 128,647 | 241,445 | | | | | | | | | Totals With External Station | | | | | 139,210 | 131,637 | 270,847 | | | | | | | | | Source: LSC, 2010. | | | | | | | | | | | | | | | | | Table III-3
Unbalanced Daily Person Productions and Attractions by Trip Purpose | | | | | | | | | | | | | | |--|--|------------------|----------|--------|--------|-------------|--------|--------|--------|--------|-------------|--------|--------|---------| | | | | | | F | Productions | | | | ı | Attractions | | | | | Description | Unit | Land Use
Code | Quantity | H-REC | H-S | H-W | н-о | 0-0 | H-REC | H-S | H-W | н-о | 0-0 | TOTAL | | Residential Low Density (SF) - Resident | DUs | 1 | 1,454 | 1,675 | 2,978 | 3,350 | 5,956 | 2,792 | 0 | 0 | 0 | 0 | 1,861 | 18,611 | | Residential High Density (MF) - Resident | DUs | 3 | 4,023 | 3,584 | 5,866 | 6,191 | 10,102 | 2,933 | 0 | 0 | 0 | 0 | 3,910 | 32,586 | | Mobile Home Park - Resident | DUs | 4 | 132 | 78 | 121 | 143 | 207 | 64 | 0 | 0 | 0 | 0 | 100 | 713 | | Residential Low Density (SF) - Visitor | DUs | 5 | 627 | 2,897 | 2,019 | 0 | 1,931 | 1,229 | 0 | 0 | 0 | 0 | 702 | 8,778 | | Residential High Density (MF) - Visitor | DUs | 7 | 2,426 | 9,207 | 6,417 | 0 | 6,138 | 3,906 | 0 | 0 | 0 | 0 | 2,232 | 27,899 | | Lodging (Hotel) - Visitor | Room | 10 | 997 | 4,068 | 2,393 | 0 | 1,914 | 1,077 | 0 | 120 | 479 | 718 | 1,196 | 11,964 | | Resort Hotel - Visitor | Room | 11 | 976 | 3,982 | 2,342 | 0 | 1,874 | 1,054 | 0 | 117 | 468 | 703 | 1,171 | 11,712 | | Retail/Commercial | KSF | 13 | 1,305 | 0 | 0 | 0 | 0 | 11,391 | 9,035 | 20,033 | 3,928 | 26,318 | 7,856 | 78,561 | | Light Industrial | KSF | 21 | 311 | 0 | 0 | 0 | 0 | 881 | 0 | 0 | 808 | 380 | 1,414 | 3,483 | | Public Utility | Acres | 23 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Public School | Acres | 31 | 832 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | High School | Acres | 32 | 314 | 314 | 0 | 0 | 0 | 6 | 0 | 0 | 2 | 70 | 6 | 399 | | College | Student | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Hospital | Bed | 34 | 21 | 63 | 0 | 0 | 0 | 68 | 0 | 0 | 31 | 131 | 65 | 357 | | Post Office | PRS | 36 | 7,402 | 0 | 0 | 0 | 0 | 169 | 0 | 0 | 17 | 231 | 175 | 592 | | Church | Acres | 37 | 14 | 0 | 0 | 0 | 0 | 414 | 0 | 0 | 0 | 858 | 688 | 1,960 | | Downhill Skiing-Employees | Employee | 39 | 2,163 | 0 | 0 | 0 | 0 | 1,006 | 0 | 0 | 973 | 260 | 1,006 | 3,245 | | Downhill Skiing-Skiers | SAOT | 40 | 24,950 | 0 | 0 | 0 | 0 | 0 | 35,130 | 0 | 0 | 798 | 3,992 | 39,920 | | Cross-Country Skiing/Snowmobiling | SAOT | 41 | 350 | 0 | 0 | 0 | 0 | 0 | 579 | 0 | 27 | 7 | 53 | 665 | | | | | Totals | 25,868 | 22,135 | 9,684 | 28,121 | 26,989 | 44,743 | 20,270 | 6,733 | 30,473 | 26,429 | 241,445 | | | | | | | | 112,798 | | | | | 128,647 | | | | | Source: LSC, 2010. | | | | | | | | | | | | | | | Table III-4 shows the results by trip purpose after trip balancing has been completed. Balancing was performed by holding attractions for home-based recreation and home-based shopping trips, holding productions for home-based work trips, and averaging productions and attractions for home-based other and other-to-other trips. The greatest number of trips are generated as home-based recreation trips. In fact, 95,324 daily person home-based recreation trips were generated out of the 268,930 total trips, which equates to 35 percent of the total trip generation. The next greatest trip purpose was home-based other for which 59,124 daily person-trips were generated. The smallest portion of trips were home-based work trips, which comprised seven percent of the total daily person-trips generated by the model area. These totals include external station trip production and attraction from locations at SR 203 near US Highway 395. The trip purpose totals represent the person-trip travel volumes for travel to and from the TAZs within the Town of Mammoth Lakes on a typical winter Saturday. | Table III-4
Balanced Daily Person Productions and Attractions by Trip Purpose | | | | | | | | | | | |
--|---------------|--------|--------|--|--|--|--|--|--|--|--| | Description Productions Attractions Total | | | | | | | | | | | | | Home-Based Recreation | 47,662 | 47,662 | 95,324 | | | | | | | | | | Home-Based Shopping | 20,270 | 20,270 | 40,540 | | | | | | | | | | Home-Based Work | 9,999 | 9,999 | 19,998 | | | | | | | | | | Home-Based Other | 29,562 | 29,562 | 59,124 | | | | | | | | | | Other-to-Other | 26,972 | 26,972 | 53,944 | | | | | | | | | | Total | Total 268,930 | | | | | | | | | | | | Notes: From balanced.bin file. Includes 240,290 from land uses and 28,640 from external station volumes. Source: LSC 2010. | | | | | | | | | | | | Table III-5 presents a comparison of trip rate changes from the 2005 model. Some of the land use categories saw no change in trip rates between 2005 and 2009. For most land use categories, the recommended changes in trip rates were more notable, with a reduction of 20-30 percent in some. | Land Use Code Rate Units Rate Units Rate Units Rate Units Residential Low Density (SF) - Resident 1 Residential Low Density (SF) - Resident 1 Residential High Density (MF) - Resident 1 Loo 1 Residential High Density (MF) - Resident 1 Loo 1 DUs Loo 1 DUs 1 Loo | | Table III-5 Trip Rate Changes from 2005 to 2009 Model | | | | | | | | | | | | |--|-----|---|--------|----------|--------|----------|--|--|--|--|--|--|--| | Residential High Density (MF) - Resident Mobile Home Park - Resident DUS Seventuction based on new calibration targets. Residential Low Density (SF) - Visitor Residential Low Density (SF) - Visitor Residential High Density (MF) Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced | Use | Description | | | | | Reason for Change from 2005 | | | | | | | | Mobile Home Park - Resident 7.00 DUs 5.40 DUs 25% reduction based on new calibration targets. Residential Low Density (SF) - Visitor 7.00 DUs 14.00 DUs 14.00 DUs Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Residential High Density (MF) - Visitor 16.00 Room 12.00 DUs 11.50 DUs Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration ta | 1 | Residential Low Density (SF) - Resident | 19.00 | DUs | 12.80 | DUs | Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. | | | | | | | | Residential Low Density (SF) - Visitor Residential High Density (MF) - Visitor Residential High Density (MF) - Visitor Residential High Density (MF) - Visitor 17.00 DUS 11.50 DUS Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. 10 Lodging (Hotel) - Visitor 16.00 Room 12.00 Room 12.00 Room 25% reduction based on new calibration targets. 11 Resort Hotel - Visitor 16.00 Room 12.00 | 3 | Residential High Density (MF) - Resident | 12.00 | DUs | 8.10 | DUs | Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. | | | | | | | | Residential High Density (MF) - Visitor 17.00 DUs 11.50 DUs Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. 10 Lodging (Hotel) - Visitor 16.00 Room 12.00 Room 25% reduction based on new calibration targets. 11 Resort Hotel - Visitor 16.00 Room 12.00 Room 25% reduction based on new calibration targets. 12 Light Industrial 14.60 Acres 11.20 KSF Changes in Floor Area Ratio (FAR) assumptions and 25% reduction based on new calibration targets. 13 Retail/Commercial 78.71 KSF 60.20 KSF Changes in Floor Area Ratio (FAR) assumptions and 25% reduction based on new calibration targets. 14 Light Industrial 14.60 Acres 11.20 KSF Units were incorrect in 2005 table. KSF is correct for both 2005 and 2009. Change in FAR assumptions and 25% reduction. 15 Public School 71.00 Acres 0.00 Acres School is not in session on Saturdays. 2009 model is a Saturday model. 16 College 76.00 Student 2.08 Student 2.08 Student 2005 model had college employees and dorms in the same TAZ. Dorm trips are now represented as residential high density. 16 Post Office 0.50 PRS 0.08 PRS 7,400 postal boxes. New rate more indicative of a Saturday. Prior rate more indicative of weekday conditions. 17 Church 182.00 Acres 140.00 Acres 25% reduction based on new calibration targets. 18 Downhill Sking-Employees 6.10 Employee 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. 19 Downhill Sking-Skiers 2.30 SAOT 1.60 SAOT 25% reduction based on new calibration targets. | 4 | Mobile Home Park - Resident | 7.00 | DUs | 5.40 | DUs | 25% reduction based on new calibration targets. | | | | | | | | Lodging (Hotel) - Visitor Resort Hotel - Visitor 16.00 Room 12.00 | 5 | Residential Low Density (SF) - Visitor | 21.00 | DUs | 14.00 | DUs | Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. | | | | | | | | 11 Resort Hotel -
Visitor 16.00 Room 12.00 Room 25% reduction based on new calibration targets. 13 Retail/Commercial 78.71 KSF 60.20 KSF Changes in Floor Area Ratio (FAR) assumptions and 25% reduction based on new calibration targets. 21 Light Industrial 14.60 Acres 11.20 KSF Units were incorrect in 2005 table. KSF is correct for both 2005 and 2009. Change in FAR assumptions and 25% reduction. 23 Public Utility 0.00 Acres 0.00 Acres 0.00 Acres School is not in session on Saturdays. 2009 model is a Saturday model. 32 High School 71.00 Acres 1.27 Acres School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. 33 College 76.00 Student 2.08 Student 2005 model had college employees and dorms in the same TAZ. Dorm trips are now represented as residential high density. 34 Hospital 18.00 Bed 17.00 Bed Minor adjustment to reflect new calibration targets. 36 Post Office 0.50 PRS 0.08 PRS 7,400 postal boxes. New rate more indicative of a Saturday. Prior rate more indicative of weekday conditions. 37 Church 182.00 Acres 140.00 Acres 25% reduction based on new calibration targets. 38 Downhill Sking-Employees 6.10 Employee 1.50 Employee 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. 40 Downhill Sking-Skiers 2.30 SAOT 1.60 SAOT 25% reduction based on new calibration targets. 41 Cross-Country Skiing/Snowmobiling 2.50 SAOT 1.90 SAOT 25% reduction based on new calibration targets. | 7 | Residential High Density (MF) - Visitor | 17.00 | DUs | 11.50 | DUs | Reduced 19.00 by 12% to reflect over-prediction of residential trips. Additional 25% reduction based on new calibration targets. | | | | | | | | Retail/Commercial 78.71 KSF 60.20 KSF Changes in Floor Area Ratio (FAR) assumptions and 25% reduction based on new calibration targets. Light Industrial 14.60 Acres 11.20 KSF Units were incorrect in 2005 table. KSF is correct for both 2005 and 2009. Change in FAR assumptions and 25% reduction. Public Utility 0.00 Acres 0.00 Acres 0.00 Acres School is not in session on Saturdays. 2009 model is a Saturday model. Jeff School 71.00 Acres 1.27 Acres School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. College 76.00 Student 2.08 Student 2005 model had college employees and dorms in the same TAZ. Dorm trips are now represented as residential high density. Hospital 18.00 Bed 17.00 Bed Minor adjustment to reflect new calibration targets. Church 182.00 Acres 140.00 Acres 25% reduction based on new calibration targets. Downhill Skiing-Employees 6.10 Employee 1.50 Employee 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. Downhill Skiing-Skiers 2.30 SAOT 1.60 SAOT 25% reduction based on new calibration targets. | 10 | Lodging (Hotel) - Visitor | 16.00 | Room | 12.00 | Room | 25% reduction based on new calibration targets. | | | | | | | | Light Industrial Indust | 11 | Resort Hotel - Visitor | 16.00 | Room | 12.00 | Room | 25% reduction based on new calibration targets. | | | | | | | | Public School 71.00 Acres 0.00 Acres School is not in session on Saturdays. 2009 model is a Saturday model. High School 71.00 Acres 1.27 Acres School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. School is not in session on Saturdays. Some high school events still occur | 13 | Retail/Commercial | 78.71 | KSF | 60.20 | KSF | Changes in Floor Area Ratio (FAR) assumptions and 25% reduction based on new calibration targets. | | | | | | | | Public School 71.00 Acres 0.00 Acres School is not in session on Saturdays. 2009 model is a Saturday model. 71.00 Acres 1.27 Acres School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. 71.00 Acres 1.27 Acres School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. 71.00 Acres 1.27 Acres School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday model. 71.00 Student 2.08 Student 2005 model had college employees and dorms in the same TAZ. Dorm trips are now represented as residential high density. 71.00 Bed Minor adjustment to reflect new calibration targets. 72.00 PRS 0.08 PRS 7,400 postal boxes. New rate more indicative of a Saturday. Prior rate more indicative of weekday conditions. 73. Church 182.00 Acres 140.00 Acres 25% reduction based on new calibration targets. 74.00 Downhill Skiing-Employees 6.10 Employee 1.50 Employee 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. 75. Verduction based on new calibration targets. 76.00 SAOT 1.60 SAOT 1.90 SAOT 1.90 SAOT 25% reduction based on new calibration targets. | 21 | Light Industrial | 14.60 | Acres | 11.20 | KSF | Units were incorrect in 2005 table. KSF is correct for both 2005 and 2009. Change in FAR assumptions and 25% reduction. | | | | | | | | High School 71.00 Acres 1.27 Acres School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday Satu | 23 | Public Utility | 0.00 | Acres | 0.00 | Acres | No change. | | | | | | | | 33 College 76.00 Student 2.08 Student 2005 model had college employees and dorms in the same TAZ. Dorm trips are now represented as residential high density. 34 Hospital 18.00 Bed 17.00 Bed Minor adjustment to reflect new calibration targets. 36 Post Office 0.50 PRS 0.08 PRS 7,400 postal boxes. New rate more indicative of a Saturday. Prior rate more indicative of weekday conditions. 37 Church 182.00 Acres 140.00 Acres 25% reduction based on new calibration targets. 39 Downhill Skiing-Employees 6.10 Employee 1.50 Employee 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. 40 Downhill Skiing-Skiers 2.30 SAOT 1.60 SAOT 25% reduction based on new calibration targets. 41 Cross-Country Skiing/Snowmobiling 2.50 SAOT 1.90 SAOT 25% reduction based on new calibration targets. | 31 | Public School | 71.00 | Acres | 0.00 | Acres | School is not in session on Saturdays. 2009 model is a Saturday model. | | | | | | | | 34Hospital18.00Bed17.00BedMinor adjustment to reflect new calibration targets.36Post Office0.50PRS0.08PRS7,400 postal boxes. New rate more indicative of a Saturday. Prior rate more indicative of weekday conditions.37Church182.00Acres140.00Acres25% reduction based on new calibration targets.39Downhill Skiing-Employees6.10Employee1.50Employee6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees.40Downhill Skiing-Skiers2.30SAOT1.60SAOT25% reduction based on new calibration targets.41Cross-Country Skiing/Snowmobiling2.50SAOT1.90SAOT25% reduction based on new calibration targets. | 32 | High School | 71.00 | Acres | 1.27 | Acres | School is not in session on Saturdays. Some high school events still occur on Saturdays, so not taken to zero. 2009 model is a Saturday mode | | | | | | | | 36Post Office0.50PRS0.08PRS7,400 postal boxes. New rate more indicative of a Saturday. Prior rate more indicative of weekday conditions.37Church182.00Acres140.00Acres25% reduction based on new calibration targets.39Downhill Skiing-Employees6.10Employee1.50Employee6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees.40Downhill Skiing-Skiers2.30SAOT1.60SAOT25% reduction based on new calibration targets.41Cross-Country Skiing/Snowmobiling2.50SAOT1.90SAOT25% reduction based on new calibration targets. | 33 | College | 76.00 | Student | 2.08 | Student | 2005 model had college employees and dorms in the same TAZ. Dorm trips are now represented as residential high density. | | | | | | | | 37 Church 182.00 Acres 140.00 Acres 25% reduction based on new calibration targets. 39 Downhill Skiing-Employees 6.10 Employee 1.50 Employee 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. 40 Downhill Skiing-Skiers 2.30 SAOT 1.60 SAOT 25% reduction based on new calibration targets. 41 Cross-Country Skiing/Snowmobiling 2.50 SAOT 1.90 SAOT 25% reduction based on new calibration targets. | 34 | Hospital | 18.00 | Bed | 17.00 | Bed | Minor adjustment to reflect new calibration targets. | | | | | | | | 39 Downhill Skiing-Employees 6.10 Employee 1.50 Employee 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. 40 Downhill Skiing-Skiers 2.30 SAOT 1.60 SAOT 25% reduction based on new calibration targets. 41
Cross-Country Skiing/Snowmobiling 2.50 SAOT 1.90 SAOT 25% reduction based on new calibration targets. | 36 | Post Office | 0.50 | PRS | 0.08 | PRS | 7,400 postal boxes. New rate more indicative of a Saturday. Prior rate more indicative of weekday conditions. | | | | | | | | 40 Downhill Skiing-Skiers 2.30 SAOT 1.60 SAOT 25% reduction based on new calibration targets. 41 Cross-Country Skiing/Snowmobiling 2.50 SAOT 1.90 SAOT 25% reduction based on new calibration targets. | 37 | Church | 182.00 | Acres | 140.00 | Acres | 25% reduction based on new calibration targets. | | | | | | | | 41 Cross-Country Skiing/Snowmobiling 2.50 SAOT 1.90 SAOT 25% reduction based on new calibration targets. | 39 | Downhill Skiing-Employees | 6.10 | Employee | 1.50 | Employee | 6.10 represented all ski-related trips against the number of employees. 2.00 represents only employees. | | | | | | | | | 40 | Downhill Skiing-Skiers | 2.30 | SAOT | 1.60 | SAOT | 25% reduction based on new calibration targets. | | | | | | | | | 41 | Cross-Country Skiing/Snowmobiling | 2.50 | SAOT | 1.90 | SAOT | 25% reduction based on new calibration targets. | | | | | | | #### TRIP GENERATION VALIDATION The information discussed above provides the foundation for the modeling process. Although there has been significant review and analysis of the input data (land use types by TAZ) provided by the Town of Mammoth, many of the trip rates had been carried over from 1997 to 2005 and then to this 2009 model. Given the many changes throughout the creation of this model in TransCAD, it was felt that additional effort was warranted to further validate this step in the modeling process to provide additional reassurance that the final output traffic and transit assignment volumes were as accurate as possible. #### **Home-Based Trips** A comparison was made to Institute of Transportation Engineers (ITE) trip rates to confirm that a similar number of trips are produced by different methods. The comparison includes all residential dwelling unit categories for all trip types, whether to recreation, shopping, work, or other. The comparison was made with the unbalanced trips. The comparison does not include trips generated at a non-residential location. Table III-6 presents the results of this comparison, concluding that by different methods, the total number of estimated trips is within two percent with ITE rates predicting 87,000 trips (rounded) and the model predicting 88,600 (rounded). This is considered a very good match. A second comparison was made to National Highway Cooperative Research Program (NCHRP) data available in the *NCHRP 365 Travel Estimation Techniques for Urban Planning* publication. Tables III-7 through III-9 look at the following comparisons: - Households by Vehicle Availability - · Households by Household Size - Households by Income Based on these data, the NCHRP data suggest a range of 73,300 to 82,700 trips for home-based trip purposes, with a midpoint of 78,000 (rounded). At 88,600 the travel model is within 14 percent of the midpoint of that range. This is also a good finding. | | Table III-6 Residential Trip Generation Validation Using ITE Trip Rates | | | | | | | | | | | |---------------------|---|-------------------|-----------------------|---|---|--|--|--|--|--|--| | Land
Use
Code | Description of Land Use | Units | Quantity ¹ | ITE Trip
Generation Rate
(Vehicle-Trips) ² | Average
Auto
Occupancy ³ | Person-Trips Based on
ITE Vehicle and AAO
(Qty x Rate x AAO) | | | | | | | 1 | Residential Low Density (SF) - Resident | DUs | 1,454 | 9.57 | 1.49 | 20,733 | | | | | | | 3 | Residential High Density (MF) - Resident | DUs | 4,023 | 5.86 | 1.49 | 35,126 | | | | | | | 4 | Mobile Home Park - Resident | DUs | 132 | 4.99 | 1.49 | 981 | | | | | | | 5 | Residential Low Density (SF) - Visitor | DUs | 627 | 9.57 | 1.49 | 8,941 | | | | | | | 7 | Residential High Density (MF) - Visitor | DUs | 2,426 | 5.86 | 1.49 | 21,182 | | | | | | | | ITE Trip Rate Totals for These Land Uses | | 8,662 | | | 86,964 | | | | | | | | Model Totals for These Land Uses 8,662 88,587 | | | | | | | | | | | | Notes: F | HBW = home-based work, HBO = home-based o | ther, HBS = h | nome-based sh | opping, DUs = Dwel | ling Units. | | | | | | | | Sources: 1 | Town of Mammoth Lakes, 2009; ² Institute of Transportation Eng | ineers, "Trip Gen | eration Manual, 7th | Edition," 2003; 3 NCHRP 36 | 55, Table 37, all trip | purposes, 1998; LSC, 2010. | | | | | | Table III-7 Trip Generation Estimate Based On the Number of Households and Vehicle Availability (excludes Ski Trips) | Household Vehicle Availability
(Occupied Housing Units) | Number of
Households ¹ | Person-Trips Per
Household Based on
Vehicles ² | Person-Trips
Generated | | | | | | |--|--------------------------------------|---|---------------------------|--|--|--|--|--| | 0 Vehicles Available | 146 | 3.9 | 569 | | | | | | | 1 Vehicles Available | 1,112 | 6.3 | 7,006 | | | | | | | 2 Vehicles Available | 1,159 | 10.6 | 12,285 | | | | | | | 3+ Vehicles Available | 398 | 13.2 | 5,254 | | | | | | | Total in 2000 | 2,815 | | 25,114 | | | | | | | Rate to convert from Occupied to Weekend ³ | Total Housing Un | its on a Typical | 2.827 | | | | | | | Rate to convert from 2000 to 200 | 1.088 | | | | | | | | | Total 2009 Person-Trips Genera | Total 2009 Person-Trips Generated | | | | | | | | Sources: ¹US Census Bureau. Census 2000, SF 3, Table H44. Table III-8 Trip Generation Estimate Based On the Number of Households and Household Size (excludes Ski Trips) | Household Size
(Occupied Housing Units) | Number of
Households ¹ | Person-Trips Per
Household Based on
Size ² | Person-Trips
Generated | | | |---|--------------------------------------|---|---------------------------|--|--| | 1-Person Household | 805 | 3.7 | 2,979 | | | | 2-Person Household | 1,005 | 7.6 | 7,638 | | | | 3-Person Household | 408 | 10.6 | 4,325 | | | | 4-Person Household | 341 | 13.6 | 4,638 | | | | 5+ Person Household | 256 | 16.6 | 4,250 | | | | Total in 2000 | 2,815 | | 23,829 | | | | Rate to convert from Occupied to Weekend ³ | 2.827 | | | | | | Rate to convert from 2000 to 200 | 1.088 | | | | | | Total 2009 Person-Trips Genera | 73,322 | | | | | Sources: ¹US Census Bureau. Census 2000, SF 3, Table H16. ²NCHRP 365, Table 6. ³7,958 total / 2,815 occupied (Census 2000, SF 3, Table H6). ⁴8,662 (Town of Mammoth Lakes 2009) / 7,958 (Census 2000). ²NCHRP 365, Table 6. ³7,958 total / 2,815 occupied (Census 2000, SF 3, Table H6). ⁴8,662 (Town of Mammoth Lakes 2009) / 7,958 (Census 2000). Table III-9 Trip Generation Estimate Based On the Number of Households by Income (excludes Ski Trips) Person-Trips Per Household Vehicle Availability Number of Person-Trips Household Based on Households¹ (Occupied Housing Units) Generated Vehicles² Low (<15,000) 6.0 1,824 2,052 Medium (15,000-89,999) 9.3 19,086 High (90,000+) 471 12.7 5,979 Total in 2000 2,827 26,888 Rate to convert from Occupied to Total Housing Units on a Typical 2.827 Weekend³ Rate to convert from 2000 to 2009 Total Housing Units⁴ 1.088 Total 2009 Person-Trips Generated 82,738 Sources: ¹US Census Bureau. Census 2000, SF 3, Table P52 and LSC 2009. ²NCHRP 365, Table 5. ³7,958 total / 2,815 occupied (Census 2000, SF 3, Table H6). ⁴8,662 (Town of Mammoth Lakes 2009) / 7,958 (Census 2000). # **Non-Home-Based Trips** A similar comparison was made for non-home-based (non-residential) trip types. The ITE *Trip Generation Manual* does not contain trip rates for all categories of trips unique to the Town of Mammoth Lakes, so a comparison was made only for those land uses and trip categories for which data were available. Table III-10 presents the results of the non-home-based trip generation comparison. The results are within 20 percent, which is reasonable. | Table III-10 | |--| | Non-Residential Generation Validation Using ITE Trip Rates | | Land
Use
Code | Description of Land Use | Units | Quantity ¹ | ITE Trip
Generation Rate
(Vehicle-Trips) ² | Average
Auto
Occupancy ³ | Person-Trips Based on
ITE Vehicle and AAO
(Qty x Rate x AAO) | |---------------------|--|-------|-----------------------|---|---|--| | 10 | Lodging (Hotel) - Visitor | Room | 997 | 8.17 | 2.1 | 17,106 | | 11 | Resort Hotel - Visitor | Room | 976 | 8.17 | 2.1 | 16,745 | | 13 | Retail/Commercial | KSF | 1,305 | 42.94 | 1.7 | 95,262 | | 21 | Light Industrial | KSF | 311 | 6.97 | 1.6 | 3,468 | | | ITE Trip Rate Totals for These Land Uses | | | | | 132,581 | | | Model Totals for These Land Uses | | | | | 105,720 | Notes: DU = Dwelling Unit, KSF = Thousand Square Feet, PRS = postal receptacles (mailboxes), SAOT = skiiers at one time. Sources: ¹ Town of Mammoth Lakes, 2009; ² Institute of Transportation Engineers, "Trip Generation Manual, 7th Edition," 2003; ³ Model Validation and Reasonableness Checking Manual, Table 5-5, 2001; LSC, 2009. # **Chapter IV** # **Trip Distribution** ### INTRODUCTION Trip distribution is the second major step in the travel model. It answers the "where" question with regard to trip-making. Once a person decides that a trip is needed to satisfy some purpose, a choice among many possible destinations that might meet that purpose must be made and this
decision is represented in the travel model. #### TRIP DISTRIBUTION THEORY The representation of the location decision is based on Newton's model of gravity, which says the attractiveness of two objects is related to the size of the objects and inversely-related to the squared distance between them. In simpler terms and relating it to trip-making, an individual prefers a shorter trip if all else is equal, but will balance the prospect of a shorter-trip with knowledge that some destinations may serve the trip purpose better than others even if they are farther away. In trip-making choices, it is not only the distance that individuals respond to, but also travel time. Two equal choices for a product or service (e.g., the same chain store) might be an equal distance away, but the perceived attractiveness of the destinations can be affected by a number of factors. Examples of equal chain store choices being affected by the travel time include: - One location is served by a higher-speed arterial street and the other a lower-speed residential street (a.k.a. link speeds). - One location is on a street that is always congested and the is other not. - One location may have a parking cost (i.e., parking meter or pay lot) and the other does not. - One may have a bus stop nearer than the other. The total of these travel time increments or "impedances" is compared in the model. # **FRICTION FACTORS** Friction factors are sets of numbers in the modeling process that help to describe the sensitivity of travelers to the total impedance by trip purpose. Many errands individuals run, for example, occur at non-congested times of day and therefore may be less sensitive to travel distance and travel time. Trips to work, on the other hand, are more sensitive to congestion and delay as individuals need to arrive on time reliably. Friction factors for this model were adapted from the 2005 model and are shown in Figure IV-1. In this chart on the vertical axis, the higher the number, the lower the sensitivity. Looking at the solid line labeled H-O for home-based other or home to other, it does not become sensitive to travel time until about the ten-minute mark where it touches the top of the chart. This chart is intended to communicate the relative sensitivity among trip purposes. # **K-FACTORS** K-factors or "socioeconomic adjustment factors" are applied when all other impedance variables, after adjustments, still do not produce satisfactory results for some geographic subarea of the travel model. K-factors are used in the Town of Mammoth Lakes travel model for the Mammoth Slopes neighborhood area surrounding the Canyon Lodge. Figure IV-2 shows the districts used in the modeling process, consistent with the neighborhood boundaries and ski portals. Table IV-1 presents the adjustment results showing the results with and without a K-factor. The original raw results had 40 percent of residents in the Mammoth Slopes neighborhood using the Canyon Lodge ski area portal, despite that being the nearest place to access the mountain. Half of Mammoth Slopes residents were originally forecast to make a longer trip to the Main Lodge to access the mountain. When carried through the model, this resulted in inordinately high traffic volumes leaving the neighborhood via the Forest Trail and Minaret roadways. After adjustments were made, Mammoth Slopes residents are more likely to access the mountain at Canyon Lodge than either of the other lodge/portal base areas. Table IV-1 Mammoth Slopes K-Factor Adjustment Results | | | Original Ra | | Corrected Results | | | | | | | | | |-------------------|---------------------|-------------|------------------|-------------------|------------------|-----|---------------------|-----|------------------|-----|------------------|-----| | Mammoth
Slopes | Main Lodge
TAZ 1 | | Canyon
TAZ 42 | | Eagle
TAZ 130 | | Main Lodge
TAZ 1 | | Canyon
TAZ 42 | | Eagle
TAZ 130 | | | TAZ | Trips | % | | 6 | 73 | 56% | 47 | 36% | 11 | 8% | 57 | 39% | 84 | 57% | 5 | 4% | | 14 | 78 | 52% | 58 | 39% | 12 | 9% | 61 | 37% | 99 | 60% | 6 | 3% | | 15 | 52 | 53% | 39 | 39% | 8 | 8% | 41 | 37% | 65 | 59% | 4 | 4% | | 16 | 66 | 54% | 46 | 37% | 12 | 9% | 50 | 36% | 83 | 60% | 6 | 4% | | 17 | 43 | 56% | 27 | 36% | 6 | 8% | 36 | 43% | 45 | 54% | 3 | 3% | | 21 | 293 | 50% | 233 | 40% | 62 | 10% | 195 | 28% | 469 | 68% | 25 | 4% | | 22 | 110 | 52% | 83 | 39% | 18 | 9% | 85 | 36% | 144 | 61% | 9 | 3% | | 23 | 305 | 49% | 258 | 41% | 63 | 10% | 205 | 28% | 498 | 68% | 26 | 4% | | 24 | 60 | 53% | 45 | 39% | 9 | 8% | 48 | 38% | 73 | 58% | 4 | 4% | | 25 | 47 | 52% | 35 | 39% | 9 | 9% | 37 | 36% | 62 | 60% | 4 | 4% | | 26 | 56 | 51% | 42 | 39% | 11 | 10% | 43 | 35% | 76 | 61% | 5 | 4% | | 27 | 198 | 50% | 153 | 39% | 41 | 11% | 144 | 31% | 295 | 65% | 18 | 4% | | 43 | 82 | 47% | 76 | 43% | 19 | 10% | 86 | 50% | 69 | 40% | 17 | 10% | | 44 | 143 | 46% | 133 | 43% | 34 | 11% | 93 | 25% | 259 | 71% | 13 | 4% | | 45 | 23 | 49% | 19 | 41% | 5 | 10% | 16 | 31% | 34 | 65% | 2 | 4% | | 46 | 37 | 48% | 33 | 42% | 8 | 10% | 28 | 32% | 56 | 64% | 4 | 4% | | 47 | 72 | 52% | 55 | 39% | 12 | 9% | 56 | 36% | 93 | 60% | 6 | 4% | | 48 | 94 | 52% | 70 | 39% | 16 | 9% | 77 | 39% | 114 | 57% | 8 | 4% | | 49 | 59 | 53% | 43 | 39% | 8 | 8% | 49 | 41% | 68 | 56% | 4 | 3% | | 50 | 272 | 49% | 215 | 39% | 63 | 12% | 187 | 29% | 437 | 67% | 27 | 4% | | 51 | 65 | 53% | 45 | 37% | 12 | 10% | 48 | 34% | 87 | 62% | 5 | 4% | | 57 | 82 | 47% | 74 | 42% | 19 | 11% | 58 | 29% | 136 | 67% | 8 | 4% | | 58 | 175 | 49% | 146 | 41% | 38 | 10% | 122 | 30% | 274 | 66% | 16 | 4% | | 95 | 204 | 48% | 185 | 43% | 39 | 9% | 157 | 33% | 306 | 64% | 18 | 3% | | 96 | 189 | 50% | 147 | 39% | 40 | 11% | 136 | 32% | 279 | 65% | 17 | 3% | | Total | 2,878 | 50% | 2,308 | 40% | 573 | 10% | 2,115 | 32% | 4,204 | 64% | 261 | 4% | Source: Trip Distribution.mtx files from TransCAD modeling. Excerpted by LSC, 2010. ### TRIP DISTRIBUTION RESULTS The results of the trip distribution step are a table or matrix of 170 rows and 170 columns (or 167 x 167 without the external zones). This table is used by the model in subsequent steps. To digest the results more easily, the results were distilled into a 17-row and 17-column district table—Table IV-2—using the neighborhood districts previously mentioned in this report. Each district represents a collection of individual TAZs. The grey-highlighted cells diagonally across the table show trips that both begin and end in the same district. Row totals show how many trips are from each district while column totals show how many person-trips are destined to each district. As an example, there are 4,001 person-trips from the Main Lodge going to other places while other places are sending 26,269 person-trips to the Main Lodge on a daily basis. The largest trip-interchanges are between the following pairs (listed in "from" to "to" order): - Main Lodge to Main Lodge (3.0%) - Mammoth Slopes to Canyon Lodge (3.1%) - Mammoth Slopes to Old Mammoth Road (4.5%) - Shady Rest/Meridian to Old Mammoth Road (3.2%) - Old Mammoth Road to Old Mammoth Road (3.2%) - Juniper Ridge to Old Mammoth Road (2.9%) - External Stations to Main Lodge (6.1%) - External Stations to Canyon Lodge (3.7%) | | Table IV-2
Saturday District-to-District Person-Trip Distribution Results |----------|--|--------|--------|-------|-------|--------|-----|--------|-----|-----|-------|-------|--------|-------|-------|-------|-------|-------|---------| | | Destinations | DISTRICT | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | TOTAL | | | 1 | 3,993 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4,001 | | | 2 | 0 | 1,123 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1,126 | | | 3 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | | | 4 | 2,115 | 4,204 | 261 | 302 | 1,284 | 61 | 2,142 | 84 | 30 | 318 | 199 | 6,069 | 533 | 291 | 165 | 566 | 87 | 18,714 | | | 5 | 1,178 | 707 | 266 | 124 | 1,941 | 26 | 622 | 35 | 14 | 103 | 91 | 1,960 | 151 | 100 | 76 | 212 | 116 | 7,722 | | | 6 | 646 | 380 | 87 | 73 | 354 | 15 | 521 | 18 | 8 | 80 | 54 | 1,554 | 165 | 67 | 44 | 143 | 37 | 4,246 | | | 7 | 1,174 | 759 | 289 | 256 | 716 | 55 | 786 | 70 | 28 | 160 | 183 | 2,373 | 304 | 164 | 121 | 287 | 125 | 7,848 | | s | 8 | 792 | 548 | 149 | 85 | 429 | 15 | 627 | 24 | 9 | 93 | 60 | 1,856 | 174 | 94 | 59 | 177 | 53 | 5,243 | | Origins | 9 | 396 | 255 | 98 | 33 | 201 | 7 | 260 | 10 | 4 | 39 | 28 | 826 | 68 | 35 | 28 | 90 | 38 | 2,417 | | 0 | 10 | 882 | 567 | 160 | 88 | 485 | 19 | 707 | 24 | 10 | 105 | 72 | 2,182 | 242 | 96 | 66 | 229 | 64 | 5,998 | | | 11 | 1,785 | 1,159 | 381 | 140 | 907 | 32 | 1,375 | 41 | 18 | 201 | 134 | 4,287 | 441 | 170 | 134 | 494 | 171 | 11,871 | | | 12 | 1,678 | 1,137 | 472 | 620 | 1,096 | 146 | 1,485 | 178 | 80 | 365 | 495 | 4,308 | 778 | 403 | 324 | 689 | 173 | 14,426 | | | 13 | 386 | 247 | 100 | 87 | 205 | 22 | 329 | 25 | 12 | 68 | 90 | 992 | 181 | 65 | 49 | 120 | 42 | 3,021 | | | 14 | 1,133 | 790 | 1,156 | 125 | 584 | 25 | 938 | 39 | 15 | 145 | 105 | 3,009 | 251 | 132 | 90 | 316 | 86 | 8,941 | | | 15 | 824 | 567 | 162 | 66 | 348 | 15 | 585 | 20 | 10 | 88 | 77 | 2,081 | 196 | 79 | 78 | 263 | 65 | 5,522 | | | 16 | 1,080 | 742 | 230 | 110 | 511 | 25 | 834 | 32 | 17 | 128 | 125 | 2,881 | 285 | 120 | 104 | 368 | 95 | 7,687 | | | 17 | 8,208 | 4,942 | 2,489 | 33 | 2,553 | 8 | 1,036 | 9 | 4 | 117 | 33 | 3,543 | 275 | 69 | 184 | 317 | 1,834 | 25,655 | | | TOTAL | 26,269 | 18,128 | 6,328 | 2,143 | 11,619 | 471 | 12,248 | 610 | 259 | 2,011 | 1,746 | 37,924 |
4,045 | 1,885 | 1,523 | 4,270 | 2,985 | 134,465 | | Source | District Key 1. Main Lodge 6. Knolls 11. Shady Rest / Meridian 16. Snowcreek 2. Canyon Lodge 7. Main Street 12. Old Mammoth Road 17. Externals 3. Eagle Lodge 8. Majestic Pines 13. Gateway 4. Mammoth Slopes 9. Sierra Star 14. Juniper Ridge 5. North Village 10. Sierra Valley 15. Old Mammoth | | | | | | | | | | | | | | | | | | | ### Trip Length Frequency Distributions by Trip Purpose Figure IV-3 shows the trip length frequency distribution for the five trip purposes. This chart is intended to communicate that the highest number of trips are about three minutes in duration and that trips of over 10 minutes are rare, except recreation trips. Validation of trip distribution is usually done, in part, by comparing household travel survey information on trip times to modeled trip times. Comprehensive data are not available in this regard. Census data do exist to validate the home-based work trip purpose with the caveat that Census data generally represent weekday commuting times, whereas this model is attempting to represent Saturday work trip times. Table IV-3 presents the available data from the Census and from model outputs. At a gross level, both actual and modeled data show in excess of 90 percent of work trips taking less than 24 minutes to complete. There is consistency on this point. Figure IV-4 shows the trip length frequency distribution visually. From this chart, the shape of the curves are similar, indicating reasonable results. | Table IV-3
Travel Time to Work Trip Length Validation | | | | | | | | | |--|-------------------|----------------------|---------------------|--|--|--|--|--| | Travel Time | | 00, Weekday
sons) | Saturday
Modeled | | | | | | | | Number | Percentage | Percentage | | | | | | | Less than 5 minutes | 573 | 14.7% | 66.3% | | | | | | | 5 to 9 minutes | 1,593 | 40.8% | 25.5% | | | | | | | 10 to 14 minutes | 840 | 21.5% | 4.4% | | | | | | | 15 to 19 minutes | 375 | 9.6% | 3.9% | | | | | | | 20 to 24 minutes | 190 | 4.9% | 0.0% | | | | | | | 25 to 29 minutes | 35 | 0.9% | 0.0% | | | | | | | 30 to 34 minutes | 105 | 2.7% | 0.0% | | | | | | | 35 to 39 minutes | 0 | 0.0% | 0.0% | | | | | | | 40 to 44 minutes | 17 | 0.4% | 0.0% | | | | | | | 45 to 59 minutes | 102 | 2.6% | 0.0% | | | | | | | 60 to 89 minutes | 0 | 0.0% | 0.0% | | | | | | | 90 or more minutes | 74 | 1.9% | 0.0% | | | | | | | Did not work at home | 3,904 | 100.0% | 100.0% | | | | | | | Workedathome | 323 | n/a | n/a | | | | | | | Total | 4,227 | n/a | n/a | | | | | | | Source: US Census Bureau, | 2000 Census, SF3: | Table P31. LSC, 20 | 010. | | | | | | ### **Recreation Trip Distribution Results** As noted in the chapter on trip generation, recreation trips represent 35 percent of peak Saturday trip making in the Town of Mammoth Lakes. Not only do recreation trips represent a large proportion of all Saturday trips, but their geographic distribution is primarily to four locations. It is therefore important to look at validating the results of the trip distribution for recreation trips. Table IV-4 presents the results of the modeled versus the current trip distribution for recreation trips. Estimates of current skier totals provided by the Town of Mammoth Lakes suggest a percentage distribution of skiers of 33/33/17/17 at the Main Lodge, Canyon Lodge, Eagle Lodge, and North Village, respectively. This distribution is only for skiers and does not include employees, lodge area shopping, or other associated trips. Modeled percentage recreation trips are distributed 41/30/15/14 at Main Lodge, Canyon Lodge, Eagle Lodge, and North Village, respectively. Like the actual data, these data are for skiers only. These modeled results are within three percent for Canyon Lodge, Eagle Lodge, and North Village, and are within eight percent for the Main Lodge, so are considered to be within expected model tolerances. | Table IV-4
Ski Lodge / Portal Distribution Results
(H-REC Trip Purpose) | | | | | | | | | |---|---------------------|------------------------|------------------------|-------------------------|----------------|------------------|--|--| | Lodge / Portal Destinations | | | | | | | | | | | Main Lodge
TAZ 1 | Canyon Lodge
TAZ 42 | Eagle Lodge
TAZ 130 | North Village
TAZ 28 | Total | | | | | Internal Origins | Trips | 7,025 | 6,350 | 3,017 | 2,962 | 19,353 | | | | External Origins | Trips | 8,049 | 4,834 | 2,475 | 2,247 | 17,605 | | | | Modeled Total ¹ | #
% | 15,073
40.8% | 11,184
30.3% | 5,491
14.9% | 5,209
14.1% | 36,958
100.0% | | | | Current Skier Estimates,
Including Employees ² | % | 33.3% | 33.3% | 16.7% | 16.7% | 83.3% | | | Figures IV-5, IV-6, IV-7, and IV-8 visually display the origin location of trips attracted to the Main Lodge, Canyon Lodge, Eagle Lodge, and North Village, ### Trip Distribution respectively. Trips attracted to the Main Lodge come primarily from the SR 203 external, and the following neighborhood districts: Old Mammoth Road, Meridian, North Village and Main Street areas. Trips attracted to the Canyon Lodge come primarily from the SR 203 external node, and the Mammoth Slopes neighborhood district. Trips attracted to the Eagle Lodge come primarily from the SR 203 external node and the following neighborhood districts: Juniper Ridge, Main Street, Meridian, and Snowcreek. Trips attracted to the North Village come primarily from the SR 203 external, and the North Village, Main Street, and Old Mammoth neighborhood districts. # **Chapter V** ### **CHAPTER V** ## **Mode Split** ### INTRODUCTION Mode split refers to the allocation of person-trips between the available travel modes. The Town of Mammoth Lakes model includes two modes for travel—auto and transit. The process splits the trips for each origin-destination pair between the two trip modes. The end result provides the number of person-trips between each zone pair by mode. ### MODE SPLIT METHODOLOGY Mode split in the model was calculated by comparing auto travel times to transit travel times and applying a mode split curve. The logic behind a mode split curve is that potential transit riders will be more likely to choose transit if the travel time is similar to the auto travel time. Where these differences are large (i.e., areas far from transit services), the transit mode split will be low to reflect the lower attractiveness of transit options. Two separate mode split curves were used—one for home-based recreation trips and one for the other four trip purposes. The difference between them reflects a higher transit utilization for home-based recreation trips. This is due to the fact that the Town of Mammoth Lakes transit system is specifically designed to maximize ridership for recreation trips since the ski area portals currently have a low parking supply. The curves are shown in Figures V-1 and V-2 and are consistent with those used in the prior Town of Mammoth Lakes model. In addition to using the mode split curves, mode split for recreation trip destinations at the ski areas was adjusted to match the observed mode split based on survey data collected by the Town. Table V-1 shows the mode split at the three ski area portals as collected in January 2009. | | Table V-1 | | | | | | | | | | |-------------|-------------------------------------|---------------|------------|-------|-------------------|---------|------|--|--|--| | | Observed Mode Split at Ski Gateways | | | | | | | | | | | C-4 | Мо | de Choice | Response | s | Mode Choice Split | | | | | | | Gateway | Vehicle | Transit | Walk | Total | Vehicle | Transit | Walk | | | | | Main | 62 | 17 | 20 | 99 | 63% | 17% | 20% | | | | | Canyon | 51 | 30 | 24 | 105 | 49% | 29% | 23% | | | | | Eagle | 29 | 9 | 8 | 46 | 63% | 20% | 17% | | | | | Source: Tow | n of Mammoth I | Lakes Survey, | Dec. 2008. | | | | | | | | As shown, auto trips represented approximately 49 to 63 percent of total trips to the ski portals while transit trips ranged from 17 percent at the Main Lodge to 29 percent at Canyon Lodge. The higher percentage at Canyon Lodge is likely due to The Village Gondola which connects the Canyon Lodge ski area to The Village area near Minaret Road. In addition to the bus service, the gondola is included in the modeled transit network. Based on these data, auto travel time penalties were calculated and inserted into the auto travel time skims to calibrate the mode split for recreation trips to the ski area data shown in Table V-1. In other words, if a skier base area had too high a vehicular mode share, then additional travel time was added to that base area for vehicular trips (auto, vanpool, etc.) to make it less attractive an option relative to transit. This was done only at the base area so that it did not affect vehicular trips to adjacent zones. These penalties, shown below, account for the reduced attractiveness of auto trips due to various factors, including low parking supply and congestion at the ski area portals. - Main Lodge = 21 minutes, 16 seconds - Canyon Lodge = 19 minutes, 49 seconds - Eagle Lodge = 11 minutes Finally, additional penalties were added to TAZs 19, 28, and 30, which represent the resort areas surrounding The Village. A 10-minute penalty was added to account for lower parking supply in the area and the presence of The Village Gondola. ### **RESULTS** The resulting mode split by TAZ is shown in Figure V-3. As shown, transit share is high at the three ski area portals as well as areas surrounding The Village and the gondola. Transit share is also high along Main Street and Old Mammoth Road due to the transit routes that serve these areas. Overall, transit share is approximately 15 percent for all trip purposes with home-based recreation trips having the largest share at approximately 35 percent. This is due to the high transit share at the ski
area portals. Table V-2 shows the final transit share by trip purpose. Table V-3 shows the final transit share at the four ski portals. | | Table V-2 | | | | | | | | | |-----------------------------|-----------|--------------|---------|---------|---------|--|--|--|--| | Mode Choice by Trip Purpose | | | | | | | | | | | T . D | Daily Pe | rson-Trips b | y Mode | Mode | Split | | | | | | Trip Purpose | Vehicle | Transit | Total | Vehicle | Transit | | | | | | H-REC | 31,200 | 16,462 | 47,662 | 65.5% | 34.5% | | | | | | H-S | 19,830 | 440 | 20,270 | 97.8% | 2.2% | | | | | | H-W | 9,787 | 213 | 10,000 | 97.9% | 2.1% | | | | | | H-O | 28,718 | 844 | 29,562 | 97.1% | 2.9% | | | | | | 0-0 | 24,846 | 2,126 | 26,972 | 92.1% | 7.9% | | | | | | Totals | 114,381 | 20,084 | 136,465 | 85.1% | 14.9% | | | | | | Source: LSC, 2010. | | | | | | | | | | | Table V-3
Mode Choice at Ski Area Gateway
(All Trip Purposes) | | | | | | | | | |---|------|----------|--------------|--------|---------|---------|--|--| | Cotoway | | Daily Pe | rson-Trips b | y Mode | Mode | Split | | | | Gateway | TAZ | Vehicle | Transit | Total | Vehicle | Transit | | | | Main | 1 | 10,256 | 4,891 | 15,147 | 67.7% | 32.3% | | | | Canyon | 42 | 6,919 | 2,705 | 9,624 | 71.9% | 28.1% | | | | Eagle | 130 | 2,070 | 1,107 | 3,177 | 65.2% | 34.8% | | | | North Village | 28 | 3,189 | 1,466 | 4,655 | 68.5% | 31.5% | | | | Source: LSC, 20 | 010. | | | | | | | | As shown, transit shares at the ski portals range from 35 percent at Eagle Lodge to 28 percent at Canyon Lodge. These percentages compare well to the actual transit share shown in Table V-1 with the differences caused by the fact that the data in Table V-1 are for home-based recreation trips only and include the walk mode while the shares shown in Table V-3 are for all trip purposes and include only vehicle and transit modes. Since the other non-recreation trip purposes generally have a lower transit share, the totals in Table V-3 are lower than those shown in Table V-1. To further confirm the correct transit share, total transit system boardings from the model were compared to current ridership data provided by the Town of Mammoth Lakes. The results show that model-generated transit boardings are within three percent of the actual transit boardings. Since the level of transit use is correctly represented in the model, this confirms that the correct transit share is being used. This is important since it ensures that the correct number of vehicle-trips are used in the vehicle assignment. ### P-A to O-D TRANSFORMATION The final step before assignment is to convert the production-attraction (P-A) person-trips between TAZ pairs to origin-destination (O-D) transit and auto trips. Specifically, the production-attraction person-trips generated in the trip distribution step were first split into transit and auto person-trips using the mode split data discussed above. The resulting daily transit person-trips were then used in the transit assignment step discussed in Chapter VI. For daily auto trips, the transformation involved conversion from person-trips to auto trips. This conversion required the use of occupancy factors, or the average number of persons per vehicle. Vehicle occupancy factors generally differ based on trip purpose. The following vehicle occupancy factors were used in the model: - Home-based recreation trips = 3.0 persons per vehicle - Home-based work trips = 1.1 persons per vehicle - Home-based shopping, home-based other, and other-to-other trips = 1.8 persons per vehicle These vehicle occupancy factors were estimated based on several sources, including the 2001 National Household Travel Survey (NHTS), NCHRP 365 - Travel Estimation Techniques for Urban Planning, the US Census data shown in Table V-4, as well as adjustments made based on the count data in Chapter I. | Table V-4 | | | | | | | | | |---|--|------------|--|--|--|--|--|--| | Private Vehicle Occupancy for W | Private Vehicle Occupancy for Workers Age 16 and Older | | | | | | | | | Persons | | | | | | | | | | Travel Time | Number | Percentage | | | | | | | | Drove Alone (SOV) | 2,543 | 78.7% | | | | | | | | 2-person carpool | 654 | 20.2% | | | | | | | | 3-person carpool | 21 | 0.6% | | | | | | | | 4-person carpool | 13 | 0.4% | | | | | | | | 5-or-more-person carpool | 0 | 0.0% | | | | | | | | Total | 3,231 | 100.0% | | | | | | | | Computed Average Auto Occupancy 1.23 | | | | | | | | | | Source: US Census Bureau, 2000 Census, SF4, Table PCT60; LSC Computation of Average Auto Occupancy, 2009. | | | | | | | | | Once the daily origin-destination transit and auto trips were calculated using the P-A to O-D transformation, the daily trips were converted to peak-hour trips using daily distribution curves. Different curves were used for home-based recreation, home-based work, and the other three trip purposes (home-based shopping, home-based other, and other-to-other). The curves were calculated based on the daily count data shown in Figure I-3. For home-based recreation trips, the count along Minaret Road near The Village was used since it was assumed to contain mostly recreation trips driving to and from the Main Lodge ski area. For home-based shopping trips, home-based other trips, and other-to-other trips, the curve was calculated by taking an average from various count locations throughout the town. Finally, the home-based work curve was calculated by averaging the recreation-based and the home-based shopping, home-based other, and other-to-other curves. This assumption was considered reasonable since a large proportion of peak winter Saturday work trips are associated with recreational uses, but do not experience the large peaking characteristics of home-based recreation trips. The resulting daily distribution curves are shown in Figure V-4. As shown in Figure V-4, the peak hour for all three daily distribution curves is 4:00 to 5:00 p.m. As a result, data for this hour were used to calculate the peak winter Saturday peak-hour auto O-D trips to be used in the peak-hour auto assignment. # **Chapter VI** ## **Assignment** ### INTRODUCTION This chapter discusses the trip assignment models that were used to estimate traffic flow on the network using the origin-destination pairs generated in trip distribution. The assignment of trips to the network relies on the determination of routes through the network based on the impedance or travel time of each link. ### ASSIGNMENT METHODOLOGY Various assignment procedures are available depending on the type of estimate desired. TransCAD provides six options for trip assignment as follows: - All or Nothing - Capacity Restraint - Incremental - User Equilibrium - Stochastic User Equilibrium - System Optimum The Stochastic User Equilibrium (SUE) method, which uses an iterative process to achieve a solution based upon travel time and capacity, was used in the model. The solution reached is an assignment in which no travelers can improve their travel times by shifting routes or a state of "user equilibrium." In each iteration, network link flows are computed, which incorporate link capacity restraint effects and flow-dependent travel times. SUE assumes travelers do not have perfect ¹ The all-or-nothing method is typically used to identify where traffic would go if there were no capacity limitations. Capacity restraint and incremental assignment methods are older, less robust methods of allocating traffic volumes with some consideration for congestion, but do not provide "feedback loops" for the assignment to reach an optimum allocation. User equilibrium (UE) contains a feedback loop and assumes all drivers know the street network perfectly. In practice, many drivers do not always exit congested facilities (i.e., highways) for side streets because they do not know their way and/or are unaware that side streets might be faster. UE is practicable in a smaller urban area like Mammoth Lakes, and SUE still offers some advantages. The system optimum method offers more tools to segregate traffic by types (e.g., trucks vs. cars), a capability that is not yet needed for the Town of Mammoth Lakes Model. ### **Assignment** information concerning network attributes and/or they perceive travel costs in different ways. The assignment results are more realistic because SUE permits use of less attractive as well as the most attractive routes. The traffic assignment procedure uses the following Bureau of Public Roads (BPR) volume delay function to update travel times based upon the volume assigned to each roadway: $$T_i = t_i \times \left[1 + \alpha \left(\frac{x_i}{C_i} \right)^{\beta} \right]$$ where: T_i = Congested travel time on link i t_i = Free-flow travel time on link i x_i = Volume on link i C_i = Capacity of link i α , β = Calibration parameters As roadways begin to approach capacity, the travel time along those roadways is recalculated in the traffic assignment procedure. The newly calculated travel times are then used to assign another portion of the traffic. The model is designed to stop iterating once adequate equilibrium is reached (which under existing conditions occurs after four iterations for the daily assignment and six iterations for the peak-hour assignment). As roadways become more congested in the future, more iterations will be needed. #### ROADWAY ASSIGNMENT ### All-Day Traffic Assignment Daily assignment was performed using the daily origin-destination trip information and the existing roadway network. Daily roadway capacities were used along with the BPR volume delay function to calculate congested travel times. The assignment model performed a total of four iterations before equilibrium was reached. To validate the daily model results, the model traffic
assignment was compared to the observed traffic volumes presented in Figure I-3. The approach to the validation process is to conduct a point validation analysis. Point validation represents a higher standard for calibration than is typically used. Not only are overall flows of traffic volumes compared, but also site-specific volumes. A calibrated model should provide results that are reasonably close for major links in the street network. Table VI-1 shows the two-way volume error range that was used in validating the model. For low-volume links, a larger error range is acceptable because of the lack of congestion. A difference of 100 percent for volumes less than 1,000 vehicles per day has little effect on congestion because less roadway capacity is being used. For higher volume roadways, the percentage error must be much smaller. | Table VI-1
Point Validation Error Range - Daily | | | | | | | |--|--------------------|--|--|--|--|--| | Daily Two-Way
Traffic Volumes | Error
Range +/- | | | | | | | < 1,000 | 100% | | | | | | | 1,000 - 3,999 | 50% | | | | | | | 4,000 - 9,999 | 25% | | | | | | | 10,000 - 15,000 | 15% | | | | | | | > 15,000 | 10% | | | | | | During the validation process, links with non-validating traffic counts were identified. In order to have the model accurately match actual traffic counts and therefore represent the actual travel patterns of the Town of Mammoth Lakes, iterative adjustments were made to the impedances of the model network. Calibrated model parameters that establish the base-year model were used in modeling the future growth projections and to evaluate alternate transportation network improvements. Table VI-2 shows the links that were adjusted and the corresponding increase in impedance that was made in order to improve the model's representation of existing travel patterns. | ı | Table VI-2 Daily Vehicular Assignment - Impedance Adjustments | | | | | | | |----------|---|-----------------------------|--|--|--|--|--| | Link No. | Street Name | Added Travel
Time (min.) | | | | | | | 9 | Canyon Blvd. | 0.35000 | | | | | | | 10 | Canyon Blvd. | 0.24001 | | | | | | | 30 | Forest Trail | 0.11992 | | | | | | | 33 | Forest Trail | 0.35743 | | | | | | | 45 | Grindelwald Road | 0.79991 | | | | | | | 55 | Lake Mary Road | 0.56071 | | | | | | | 57 | Lakeview Blvd. | 0.19996 | | | | | | | 126 | Sierra Nevada Road | 0.24000 | | | | | | | 157 | Main Street | 0.05998 | | | | | | | 158 | Main Street | 0.15499 | | | | | | | 162 | Main Street | 0.04008 | | | | | | | 167 | Minaret Road | 0.40000 | | | | | | | 177 | Sierra Park Road | 0.20003 | | | | | | | 179 | Tavern Road | 0.33997 | | | | | | | 186 | Forest Trail | 0.62557 | | | | | | | 196 | Crest Lane | 0.20000 | | | | | | | 200 | Tavern Road | 0.62003 | | | | | | | 201 | Tavern Road | 0.20009 | | | | | | | 205 | Sierra Manor Road | 0.19002 | | | | | | | 206 | Sierra Park Road | 0.05598 | | | | | | | 326 | Davison Road | 0.09994 | | | | | | | 337 | Sierra Blvd. | 0.59994 | | | | | | | 350 | Chateau Road | 0.23999 | | | | | | | 361 | Meridian Blvd. | 0.20005 | | | | | | | 376 | Old Mammoth Road | 0.60006 | | | | | | | 377 | Old Mammoth Road | 0.20001 | | | | | | | 397 | Kelley Road | 0.18004 | | | | | | | 411 | South Frontage Road | 0.05804 | | | | | | | 413 | South Frontage Road | 0.00504 | | | | | | | 414 | Main Street Access | 0.01996 | | | | | | | 415 | Main Street | 0.08896 | | | | | | | 416 | Main Street Access | -0.00001 | | | | | | | 417 | South Frontage Road | 0.10000 | | | | | | | 425 | Main Street Access | 0.28004 | | | | | | | 429 | Center Street | 0.01001 | | | | | | | 468 | Forest Trail | 0.08201 | | | | | | | 472 | Main Street | 0.11596 | | | | | | | 511 | Meridian Blvd. | 0.21998 | | | | | | | 524 | Lee Road | 0.02998 | | | | | | | 525 | Sawmill Cutoff Road | 0.60008 | | | | | | | С | Table VI-2 Daily Vehicular Assignment - Impedance Adjustments | | | | | | |----------|---|-----------------------------|--|--|--|--| | Link No. | Street Name | Added Travel
Time (min.) | | | | | | 541 | Minaret Road | 0.35996 | | | | | | 542 | Lakeview Blvd. | 0.19999 | | | | | | 602 | Old Mammoth Road | 0.11994 | | | | | | 37165206 | Sierra Manor Road | 0.00004 | | | | | | 37165207 | Sierra Center Centroid Connector | 0.20009 | | | | | | 37165240 | Forest Trail | 0.13999 | | | | | | 37165325 | Lake Mary Road | 0.83610 | | | | | | 37165692 | Old Mammoth Road | 0.07995 | | | | | | 37165365 | Berner Street | 0.41992 | | | | | | 37165368 | Berner Street | 0.59999 | | | | | | 37165374 | Minaret Road | 0.04000 | | | | | | 37165376 | Canyon Blvd. | 0.76159 | | | | | | 37165415 | North Majestic Pines Drive | 0.69993 | | | | | | 37165459 | Rainbow Lane | 0.40008 | | | | | | 37165473 | Azimuth Drive | 0.79991 | | | | | | 37165477 | Sierra Nevada Road | 0.39999 | | | | | | 37165517 | Main Street | 0.09998 | | | | | | 37165518 | Laurel Mountain Road | 0.03998 | | | | | | 37165521 | Forest Trail | 0.06002 | | | | | | 37165524 | South Frontage Road | 0.04003 | | | | | | 37165525 | Main Street | 0.11596 | | | | | | 37165527 | Main Street | 0.19993 | | | | | | 37165529 | Manzanita Road | 0.19991 | | | | | | 37165534 | Mountain Blvd. | 1.00002 | | | | | | 37165541 | Lake Mary Road | 0.02002 | | | | | | 37165573 | Meridian Blvd. | 0.40003 | | | | | | 37165631 | Meridian Blvd. | 0.65999 | | | | | | 37165636 | Von's Centroid Connector | 0.62992 | | | | | | 37165640 | South Frontage Road | 0.00797 | | | | | | 37165641 | Main Street Centroid Connector | 0.00998 | | | | | | 37165644 | Old Mammoth Road | 0.08003 | | | | | | 37165647 | Old Mammoth Road Centroid Connector | 0.16996 | | | | | | 37165670 | Minaret Road | 0.19994 | | | | | Source: From ADT_TT_adjustments.bin, LSC, 2010. ### **Assignment** As shown, a total of 73 links were adjusted in order to calibrate the daily assignment to existing count data. Increases to impedance varied from approximately one second to 60 seconds. Once the model was run with the impedance adjustments listed in Table VI-2, the model generated several files. The output from the run was a 24-hour traffic volume loaded network. The following is a summary of the model results: - Total Trips = 60,072 - Daily Vehicle-Miles Traveled (VMT) = 144,192 - Daily Vehicle-Hours Traveled (VHT) = 11,621 - Average Vehicle Speed (mph) = 27.0 The above results are a key baseline for comparison of different future transportation scenarios. When the number of trips is divided into the VMT, the average trip distance is 2.40 miles. The daily VMT number is calculated as follows. Each link has a length and a volume in each direction. A two-mile link with a volume in each direction of 10,000 trips per day would result in 40,000 vehicle-miles traveled (2-mile link x 10,000 vehicle-trips x 2 directions). The sum of all links in the network, both directions, or single direction in the case of one-way streets, is added together to generate the daily systemwide VMT. Note the daily VMT for this model is based on the network representation using 1,028 links to define the road network. Table VI-3 shows the calibrated link volumes compared to the actual 2009 daily traffic counts collected in the field. Table VI-3 Daily Vehicular Assignment Comparison - Calibrated Model Results | Link No. | Street Name | Actual Daily
Volume | Existing
Model Daily
Volume | Error | Acceptable
Error | Within
Acceptable
Error? | |--------------|------------------------|------------------------|-----------------------------------|--------|---------------------|--------------------------------| | 17 | Canyon Blvd. | 3,730 | 3,943 | 5.7% | 50% | Yes | | 30 | Forest Trail | 1,030 | 1,008 | 2.2% | 50% | Yes | | 33 | Forest Trail | 630 | 1,260 | 100.0% | 100% | Yes | | 55 | Lake Mary Road | 6,250 | 4,783 | 23.5% | 25% | Yes | | 167 | Minaret Road | 4,750 | 4,664 | 1.8% | 25% | Yes | | 186 | Forest Trail | 2,510 | 3,626 | 44.5% | 50% | Yes | | 206 | Sierra Park Road | 1,180 | 1,381 | 17.1% | 50% | Yes | | 224 | Minaret Road | 4,150 | 4,212 | 1.5% | 25% | Yes | | 326 | Davison Road | 760 | 1,284 | 69.0% | 100% | Yes | | 350 | Chateau Road | 1,270 | 1,297 | 2.1% | 50% | Yes | | 361 | Meridian Blvd. | 6,070 | 6,304 | 3.9% | 25% | Yes | | 376 | Old Mammoth Road | 4,830 | 5,019 | 3.9% | 25% | Yes | | 377 | Old Mammoth Road | 4,720 | 5,019 | 6.3% | 25% | Yes | | 397 | Kelley Road | 1,500 | 2,068 | 37.9% | 50% | Yes | | 415 | Main Street | 13,080 | 14,450 | 10.5% | 15% | Yes | | 467 | Minaret Road | 9,580 | 9,396 | 1.9% | 25% | Yes | | 468 | Forest Trail | 1,080 | 1,490 | 38.0% | 50% | Yes | | 511 | Meridian Blvd. | 4,900 | 5,029 | 2.6% | 25% | Yes | | 525 | Sawmill Cutoff Road | 350 | 72 | 79.3% | 100% | Yes | | 541 | Minaret Road | 6,980 | 6,306 | 9.6% | 25% | Yes | | 552 | Highway 203 | 3,670 | 3,925 | 7.0% | 50% | Yes | | 557 | Mammoth Scenic Loop | 240 | 286 | 19.3% | 100% | Yes | | 602 | Old Mammoth Road | 10,250 | 9,012 | 12.1% | 15% | Yes | | 621 | Highway 203 | 4,010 | 4,288 | 6.9% | 25% | Yes | | 622 | Highway 203 | 4,010 | 4,288 | 6.9% | 25% | Yes | | 37165198 | Highway 203 | 3,670 | 3,924 | 6.9% | 50% | Yes | | 37165202 | Meridian Blvd. | 2,780 | 3,481 | 25.2% | 50% | Yes | | 37165216 | Chateau Road | 1,480 | 1,679 | 13.5% | 50% | Yes | | 37165365 | Berner Street | 170 | 187 | 10.0% | 100% | Yes | | 37165374 | Minaret Road | 7,910 | 9,292 | 17.5% | 25% | Yes | | 37165376 | Canyon Blvd. | 6,630 | 8,182 | 23.4% | 25% | Yes | | 37165509 | Highway 203 | 6,530 | 7,988 | 22.3% | 25% | Yes | | 37165517 | Main Street | 16,560 | 17,825 | 7.6% | 10% | Yes | | 37165544 | Lake Mary Road | 2,100 | 1,131 | 46.1% | 50% | Yes | | 37165559 | Old Mammoth Road | 5,200 | 6,477 | 24.5% | 25% | Yes | | 37165589 | Meridian Blvd. | 2,590 | 3,192 | 23.2% | 50% | Yes | | 37165631 | Meridian Blvd. | 6,470 | 6,731 | 4.0%
 25% | Yes | | 37165644 | Old Mammoth Road | 10,590 | | 2.5% | 15% | Yes | | | Total | 174,210 | | 6.1% | | | | | Total for Key Roadways | 122,530 | 127,864 | 4.4% | | | | Source: LSC, | 2010. | - | | | | <u> </u> | As shown, model volumes on all 38 links are within the acceptable error ranges shown in Table VI-1. Overall, for existing conditions, model volumes were within 6.1 percent of actual daily volumes. Figure VI-1 presents the traffic volume along all the network links compared to each other. As the traffic volume increases on a link, the bandwidth or thickness of the link increases. Hence, the greater the bandwidth, the greater the volume on the link. The bandwidth graphically reflects the travel patterns on the transportation system. As Figure VI-1 indicates, most traffic uses Main Street, Meridian Boulevard, Old Mammoth Road, and Minaret Road. ### **Peak-Hour Traffic Assignment** Peak-hour assignment was performed using the peak-hour origin-destination trip information and the existing roadway network. Hourly roadway capacities were used along with the BPR volume delay function to calculate congested travel times. However, unlike the daily assignment, the peak-hour assignment incorporated delay at signalized intersections. This provides a more realistic assignment because intersection delays are added to travel times to calculate the total travel time for a specific path. In order to account for signalized intersection delay, various intersection-related data were input into the model at the five signalized intersections in the Town of Mammoth Lakes. These data included lane geometry, length of auxiliary lanes, signal phasing, and cycle lengths. During the assignment process, delay at these signalized intersections is calculated using the delay model from the 2000 Highway Capacity Manual. In this methodology, the turning movement delay is divided into a uniform delay and an incremental delay (due to non-uniform arrivals). Once the additional data were input into the model, the peak-hour assignment with volume-dependent turning delays was run. The model performed a total of six iterations before equilibrium was reached. ### **Assignment** To validate the peak-hour model results, the model traffic assignment was compared to the observed peak-hour link traffic volumes presented in Figure I-4. Table VI-4 shows the two-way volume error range that was used in validating the peak-hour model. | Table VI-4
Point Validation Error Range - Peak Hour | | | | | | |--|--------------------|--|--|--|--| | Peak-Hour Two-Way
Traffic Volumes | Error
Range +/- | | | | | | < 100 | 100% | | | | | | 100 - 399 | 50% | | | | | | 400 - 999 | 25% | | | | | | 1,000 - 1,500 | 15% | | | | | | > 1,500 | 10% | | | | | During the validation process, links with non-validating traffic counts were identified. In order to have the model accurately match actual traffic counts and therefore represent the actual travel patterns of the Town of Mammoth Lakes, iterative adjustments were made to the impedances of the model network. Calibrated model parameters that establish the base-year model were used in modeling the future growth projections and to evaluate alternate transportation network improvements. Table VI-5 shows the links that were adjusted and the corresponding increase in impedance that was made in order to improve the model's representation of existing travel patterns. | Table VI-5 | | | | |--|---------------------|--------------|--| | Peak-Hour Vehicular Assignment - Impedance Adjustments | | | | | Link No. | Street Name | Added Travel | | | | Street Name | Time (min.) | | | 9 | Canyon Blvd. | 0.1750 | | | 10 | Canyon Blvd. | 0.1200 | | | 30 | Forest Trail | 0.0800 | | | 33 | Forest Trail | 0.3487 | | | 45 | Grindelwald Road | 0.9400 | | | 57 | Lakeview Blvd. | 0.1000 | | | 126 | Sierra Nevada Road | 0.2700 | | | 128 | Sierra Nevada Road | 0.2000 | | | 167 | Minaret Road | 0.1500 | | | 177 | Sierra Park Road | 0.0900 | | | 186 | Forest Trail | 0.5928 | | | 196 | Crest Lane | 0.1000 | | | 200 | Tavern Road | 0.5100 | | | 201 | Tavern Road | 0.1000 | | | 205 | Sierra Manor Road | 0.1740 | | | 206 | Sierra Park Road | 0.0600 | | | 224 | Minaret Road | 0.0200 | | | 244 | Villa Vista Drive | 0.6000 | | | 279 | Lakeview Blvd. | 0.1000 | | | 326 | Davison Road | 0.1300 | | | 337 | Sierra Blvd. | 0.4000 | | | 350 | Chateau Road | 0.2700 | | | 361 | Meridian Blvd. | 0.1000 | | | 376 | Old Mammoth Road | 0.3000 | | | 377 | Old Mammoth Road | 0.1000 | | | 397 | Kelley Road | 0.7000 | | | 414 | Main Street Access | 0.2000 | | | 425 | Main Street Access | 0.2000 | | | 429 | Center Street | 0.2000 | | | 37165690 | | 0.0000 | | | 468 | Forest Trail | 1.1150 | | | 472 | Main Street | 0.0200 | | | 511 | Meridian Blvd. | 0.1100 | | | 525 | Sawmill Cutoff Road | 0.6000 | | | 541 | Minaret Road | 0.1100 | | | 542 | Lakeview Blvd. | 0.1000 | | | Table VI-5 Peak-Hour Vehicular Assignment - Impedance Adjustments | | | | |---|----------------------------|-----------------------------|--| | Link No. | Street Name | Added Travel
Time (min.) | | | 602 | Old Mammoth Road | 0.2500 | | | 37165207 | | 0.1000 | | | 37165240 | Forest Trail | 0.1000 | | | 37165276 | Sierra Star Parkway | 0.2000 | | | 37165325 | Lake Mary Road | 0.0651 | | | 37165692 | Old Mammoth Road | 0.0300 | | | 37165365 | Berner Street | 0.2100 | | | 37165368 | Berner Street | 0.3000 | | | 37165374 | Minaret Road | 0.0000 | | | 37165376 | Canyon Blvd. | 0.5030 | | | 37165415 | North Majestic Pines Drive | 0.8100 | | | 37165459 | Rainbow Lane | 0.2000 | | | 37165473 | Azimuth Drive | 0.4400 | | | 37165477 | Sierra Nevada Road | 0.2000 | | | 37165488 | | 0.2200 | | | 37165518 | Laurel Mountain Road | 0.1700 | | | 37165525 | Main Street | 0.2200 | | | 37165527 | Main Street | 0.1000 | | | 37165534 | Mountain Blvd. | 0.5000 | | | 37165573 | Meridian Blvd. | 0.2000 | | | 37165574 | Laurel Mountain Road | 0.1000 | | | 37165620 | | 0.5800 | | | 37165621 | | 0.6000 | | | 37165623 | | 0.1000 | | | 37165689 | | 0.7500 | | | 37165631 | Meridian Blvd. | 0.3300 | | | 37165636 | | 0.7750 | | | 37165644 | Old Mammoth Road | 0.1920 | | | 37165647 | | 0.3000 | | | 37165670 | Minaret Road | 0.0800 | | | Source: LSC, 2010. | | | | As shown, a total of 66 links were adjusted in order to calibrate the peak-hour assignment to existing count data. Increases to impedance varied from approximately one second to 67 seconds. Once the model was run with the impedance adjustments listed in Table VI-3, the model generated a peak-hour traffic volume loaded network. Table VI-6 shows the calibrated link volumes compared to the actual 2009 peak-hour traffic counts collected in the field. | | Table VI-6 Peak-Hour Vehicular Assignment Comparison - Calibrated Model Results | | | | | | | | | | | | | | |--------------|---|--------------------------------|--|---------------|---------------------|--------------------------------|--|--|--|--|--|--|--|--| | Link No. | Street Name | Actual Peak-
Hour
Volume | Existing
Model Peak-
Hour Volume | Error | Acceptable
Error | Within
Acceptable
Error? | | | | | | | | | | 17 | Canyon Blvd. | 438 | 530 | 21.1% | 50% | Yes | | | | | | | | | | 30 | Forest Trail | 157 | 227 | 44.6% | 50% | Yes | | | | | | | | | | 33 | Forest Trail | 81 | 18 | 77.9% | 100% | Yes | | | | | | | | | | 55 | Lake Mary Road | 420 | 359 | 14.5% | 25% | Yes | | | | | | | | | | 160 | Main Street | 830 | 1,026 | 23.6% | 25% | Yes | | | | | | | | | | 167 | Minaret Road | 475 | | 5.4% | 25% | Yes | | | | | | | | | | 168 | Minaret Road | 1,035 | 908 | 12.3% | 15% | Yes | | | | | | | | | | 169 | Minaret Road | 810 | | 4.4% | 25% | Yes | | | | | | | | | | 177 | Sierra Park Road | 155 | | 49.5% | 50% | Yes | | | | | | | | | | 179 | Tavern Road | 99 | | 5.8% | 100% | Yes | | | | | | | | | | 186 | Forest Trail | 340 | | 18.3% | 50% | Yes | | | | | | | | | | 200 | Tavern Road | 59 | | 50.1% | 100% | Yes | | | | | | | | | | 206 | Sierra Park Road | 123 | | 33.2% | 50% | Yes | | | | | | | | | | 212 | Meridian Blvd. | 810 | | 5.1% | 25% | Yes | | | | | | | | | | 224 | Minaret Road | 389 | | 13.1% | 25% | Yes | | | | | | | | | | 326 | Davison Road | 76 | | 12.4% | 100% | Yes | | | | | | | | | | 328 | Lake Mary Road | 1,136 | | 0.8% | 15% | Yes | | | | | | | | | | 349 | Meridian Blvd. | 470 | * | 20.1% | 25% | Yes | | | | | | | | | | 350 | Chateau Road | 117 | 75 | 36.0% | 50% | Yes | | | | | | | | | | 361 | Meridian Blvd. | 606 | | 1.9% | 25% | Yes | | | | | | | | | | 376 | Old Mammoth Road | 548 | | 5.2% | 25% | Yes | | | | | | | | | | | Old Mammoth Road | 472 | | | | | | | | | | | | | | 377
441 | | 374 | | 10.0%
6.3% | 25% | Yes
Yes | | | | | | | | | | | Lake Mary Road | | | | 50% | | | | | | | | | | | 467 | Minaret Road | 1,001 | | 10.8% | 25% | Yes | | | | | | | | | | 468 | Forest Trail | 157 | | 9.2% | 50% | Yes | | | | | | | | | | 472 | Main Street | 1,411 | | 3.3% | 15% | Yes | | | | | | | | | | 512 | Meridian Blvd. | 488 | | 6.1% | 25% | Yes | | | | | | | | | | 525 | Sawmill Cutoff Road | 35 | | 67.2% | 100% | Yes | | | | | | | | | | 541 | Minaret Road | 717 | | 8.9% | 25% | Yes | | | | | | | | | | 557 | Mammoth Scenic Loop | 22 | | 33.7% | 100% | Yes | | | | | | | | | | 602 | Old Mammoth Road | 846 | | 12.9% | 15% | Yes | | | | | | | | | | 37165216 | Chateau Road | 148 | | 34.0% | 50% | Yes | | | | | | | | | | 37165325 | Lake Mary Road | 372 | | 0.5% | 50% | Yes | | | | | | | | | | 37165327 | Lake Mary Road | 1,293 | | 8.4% | 15% | Yes | | | | | | | | | | 37165692 | Old Mammoth Road | 1,015 | | 7.2% | 15% | Yes | | | | | | | | | | 37165365 | Berner Street | 26 | | 4.3% | 100% | Yes | | | | | | | | | |
37165370 | Minaret Road | 955 | | 14.9% | 15% | Yes | | | | | | | | | | 37165376 | Canyon Blvd. | 662 | | 17.3% | 25% | Yes | | | | | | | | | | 37165415 | North Majestic Pines Drive | 147 | | 17.1% | 50% | Yes | | | | | | | | | | 37165517 | Main Street | 1,413 | | 0.1% | 10% | Yes | | | | | | | | | | 37165531 | Main Street | 1,440 | | 2.8% | 15% | Yes | | | | | | | | | | 37165544 | Lake Mary Road | 223 | | 38.1% | 50% | Yes | | | | | | | | | | 37165559 | Old Mammoth Road | 529 | | 12.5% | 25% | Yes | | | | | | | | | | 37165573 | Meridian Blvd. | 726 | | 12.0% | 25% | Yes | | | | | | | | | | 37165589 | Meridian Blvd. | 234 | | 30.1% | 50% | Yes | | | | | | | | | | 37165634 | Meridian Blvd. | 756 | | 5.6% | 25% | Yes | | | | | | | | | | 37165644 | Old Mammoth Road | 897 | | 7.7% | 15% | Yes | | | | | | | | | | 37165670 | Minaret Road | 910 | · · | 24.6% | 25% | Yes | | | | | | | | | | | Total | 26,443 | 26,377 | 0.2% | | | | | | | | | | | | Source: LSC, | 2010. | | | | | | | | | | | | | | Model volumes on all 48 links are within the acceptable error ranges shown in Table VI-4. Overall, for the base condition, model volumes were within one percent of actual peak-hour volumes. Figure VI-2 presents the peak-hour traffic volumes in the form of bandwidths. As the traffic volume increases on a link, the bandwidth or thickness of the link increases. As with daily volumes, most peak-hour traffic uses Main Street, Meridian Boulevard, Old Mammoth Road, and Minaret Road. #### TRANSIT ASSIGNMENT The last step involved running the validated model to generate the transit boarding estimates for the various transit routes in the Town of Mammoth Lakes. In order to validate the transit portion of the model, the typical winter day transit boardings provided by the Town of Mammoth Lakes were compared to model-generated boardings. The results are shown in Table VI-7. | Table VI-7 Transit Boarding Comparison - Calibrated Model Results | | | | | | | | | | | | |---|------------------|----------------|--------|--|--|--|--|--|--|--|--| | Route Actual Existing Model Boardings Boardings | | | | | | | | | | | | | Red Line | 6,700 | 6,710 | 0.1% | | | | | | | | | | Green Line | 1,800 | 1,370 | 23.9% | | | | | | | | | | Blue Line | 2,400 | 1,240 | 48.3% | | | | | | | | | | Yellow Line | 800 | 1,250 | 56.3% | | | | | | | | | | Orange | 100 | 210 | 110.0% | | | | | | | | | | Mid-Town Lift | n/a | 330 | | | | | | | | | | | Gon dola | n/a | 2,740 | | | | | | | | | | | Total | 11,800 | 10,780 | 8.6% | | | | | | | | | | Sources: MMTS/T | OML for actual a | and LSC, 2010. | | | | | | | | | | Although the error for individual routes varies, it is within 25 percent for the routes with the majority of transit riders. Systemwide, the model-generated transit boardings are within nine percent of the actual transit boardings. This ensures that transit ridership is accurately accounted for in the model and the correct number of vehicle-trips are used in the vehicle assignment. # **Chapter VII** ### **Future Year Model Validation** #### INTRODUCTION The purpose of this chapter is to document the data used to produce the initial horizon year travel model. The chapter compares existing 2009 data and land uses to future (2030) data to show the predicted growth. Then the data are traced through the four steps of the model to verify that the model produces predictable results in each step. When that is shown, the chapter gives the results of the traffic assignment as a "base future" condition. The base future condition, then, is the point of comparison for land use and transportation network changes which are the subject of Chapter VIII. Nominally, the horizon year is 20 years from the date of the 2007 General Plan, which would make the base future 2027. For purposes of this document, the rounded number of 2030 is used given that 2030 is 20 years from the current year. #### **NETWORK STABILITY** From 2009 through 2030, no additional roadway improvements are assumed. The extension of the Red Line into Snowcreek (down to TAZs 160 and 161) was the only transit network change included in the future base model. Thus the future transportation networks are stable and nearly identical across this 20-year planning horizon. #### TRIP GENERATION The Town of Mammoth Lakes General Plan expects permanent resident population to grow at a rate of 1.4 percent to 2.4 percent per year into the future. Table VII-1 shows how the Town has grown since 1970 and is forecast to grow through 2030. Figure VII-1 also shows this in graphic format. What these data communicate is that the Town's permanent resident population is expected to grow 18-33 percent by 2020 and 36-68 percent by 2030. | | Table VII-1
Population Growth Trends (1970-2030) | | | | | | | | | | | | | |---------|---|---------------------|-----------------------|-----------------------|--|--|--|--|--|--|--|--|--| | Year | Population | Numerical
Change | Average Ann
Number | ual Change
Percent | | | | | | | | | | | 1970 | 3,528 | | | | | | | | | | | | | | 1980 | 3,929 | 401 | 40 | 1.08% | | | | | | | | | | | 1990 | 4,785 | 856 | 86 | 2.0% | | | | | | | | | | | 2000 | 7,094 | 2,309 | 231 | 4.0% | | | | | | | | | | | 2008 | 7,413 | 319 | 40 | 0.6% | | | | | | | | | | | 2020 | 8,760 to 9,855 | 1346 to 2,441 | 112 to 203 | 1.4% to 2.4% | | | | | | | | | | | 2030 | 10,065 to 12,491 | 1306 to 2,637 | 131 to 264 | 1.4% to 2.4% | | | | | | | | | | | Source: | | | | | | | | | | | | | | Table VII-2 compares the existing 2009 and 2030 land uses which are inputs to the model. The permanent resident population growth for the base future model is more consistent with the low growth scenario of 1.4 percent per year or 36 percent total growth by 2030. The future land use table shows the most growth in the categories of high-density residential (visitor), lodging (standard hotels), and resort hotels. Consistent with the General Plan expectations, not all of the visitor housing and lodging is expected to be skier-related. This is observable with the skier population growing by 18 percent, whereas the visitor housing and lodging is growing at 47 percent to 262 percent. Other categories of land use show no forecast growth. Employment and land use related to utilities, K-12 schools, colleges, government, and ski-industry employees are all expected to remain at 2009 levels. Please note that the schools, college, and government employees are kept at 2009 levels because they do not typically produce trips on a winter Saturday. The land uses, when applied in the trip generation portion of the model, generate a future estimate of 368,192 trips per day, as seen in Table VII-3. No changes in trip rates are assumed. The total number of trips represents an increase of 36.9 percent in trips between 2009 and 2030. The table also shows that the overall annualized growth in trips is expected to be 1.5 percent per year, slightly faster than the growth in permanent resident population. Skier-related trips are expected to grow most slowly, at under one percent per year, while shopping and other non-work trips are expected to grow at 1.7 percent to 2.0 percent per year. | Table VII-2 | |---| | Total Land Uses By Land Use Code: 2009 vs. 2030 | | Land Use
Code | Description of Land Use | Units | 2009 | 2030 | %
Change | |------------------|--|----------|--------|--------|-------------| | 1 | Residential Low Density (SF) - Resident | DUs | 1,454 | 1,925 | 32% | | 3 | Residential High Density (MF) - Resident | DUs | 4,023 | 5,416 | 35% | | 4 | Mobile Home Park - Resident | DUs | 132 | 132 | 0% | | 5 | Residential Low Density (SF) - Visitor | DUs | 627 | 700 | 12% | | 7 | Residential High Density (MF) - Visitor | DUs | 2,426 | 3,563 | 47% | | 10 | Lodging (Hotel) - Visitor | Room | 997 | 2,574 | 158% | | 11 | Resort Hotel - Visitor | Room | 976 | 3,529 | 262% | | 13 | Retail/Commercial | KSF | 1,305 | 1,828 | 40% | | 21 | Light Industrial | KSF | 311 | 422 | 36% | | 23 | Public Utility | Acres | 49 | 49 | -1% | | 31 | Public School | Acres | 832 | 832 | 0% | | 32 | High School | Acres | 314 | 314 | 0% | | 33 | College | Student | 0 | 0 | 0% | | 34 | Hospital | Bed | 21 | 33 | 57% | | 36 | Post Office | PRS | 7,402 | 7,400 | 0% | | 37 | Church | Acres | 14 | 14 | 0% | | 39 | Downhill Skiing-Employees | Employee | 2,163 | 2,163 | 0% | | 40 | Downhill Skiing-Skiers | SAOTS | 24,000 | 28,350 | 18% | | 41 | Cross-Country Skiing/Snowmobiling | SAOTS | 350 | 350 | 0% | Source: Town of Mammoth Lakes, 2009. Notes: DU = Dwelling Unit, KSF = Thousand Square Feet, PRS = postal receptacles (mailboxes), SAOTS skiers at one time. | Table VII-3 | |--| | Balanced Daily Person-Trips by Trip Purpose: 2009 vs. 2030 | | Trip Purpose | 2009 Balanced
Total Trips | 2030 Balanced
Total Trips | Numerical
Increase | Percent
Increase | Annualized
Growth Rate | |-----------------------|------------------------------|------------------------------|-----------------------|---------------------|---------------------------| | Home-Based Recreation | 95,324 | 114,707 | 19,383 | 20.3% | 0.89% | | Home-Based Shopping | 40,540 | 57,588 | 17,048 | 42.1% | 1.69% | | Home-Based Work | 19,998 | 26,642 | 6,644 | 33.2% | 1.38% | | Home-Based Other | 59,124 | 89,589 | 30,465 | 51.5% | 2.00% | | Other-to-Other | 53,944 | 79,667 | 25,723 | 47.7% | 1.87% | | Total | 268,930 | 368,192 | 99,262 | 36.9% | 1.51% | Source: LSC, 2010, sum of productions and attractions in balance.bin. #### TRIP DISTRIBUTION Table VII-4 presents the 2030 base future trip distribution results. The five largest trip interchanges are between the following pairs, listed in from/to order: - North Village to North Village (3.1%) - North Village to Old
Mammoth Road (2.5%) - Snowcreek to Old Mammoth Road (2.5%) - External Stations to Main Lodge (4.0%) - External Stations to North Village (2.3%) The future trip distribution patterns change from the existing patterns. Trips are less concentrated in 2030 than in 2009. Table VII-5 shows the computed differences between the trip distribution tables. North Village sees the largest increase in trip making, both as an origin and a destination. The Main Street, Sierra Star, and Snowcreek districts also see substantial increases in trip making. Canyon Lodge is forecast to see some decreases in trip making over the same period. Most other districts remain stable or see very little increase in trip making. Figure VII-2 shows the 2030 trip length frequency distribution for the five trip purposes. This chart indicates that the highest number of trips are about three minutes in duration. Most trips are under 10 minutes in duration. Both of these characteristics and the shape of the distribution curves match those of 2009. There is a slight increase in trips of 14 minutes in length, reflecting more trips from outlying neighborhood districts going to North Village. Overall, these results are consistent with the growth patterns implied by the planned land uses in 2030. | | Table VII-4 Saturday District-to-District Person-Trip Distribution Results - 2030 |---------|---|---------------------|-----------|-------------|----------|---------------------|-----|--------|-----|----------------------------------|---------|---------|--------|-------|----------|-------|-------|-------|---------| | 510 | TD10T | | | | | | | | D | estinatio | ns | | | | | | | | | | DIS | TRICT | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | TOTAL | | | 1 | 3,621 | 1 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 3,631 | | | 2 | 0 | 1,111 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1,116 | | | 3 | 5 | 3 | 1,434 | 2 | 9 | 1 | 9 | 1 | 3 | 2 | 2 | 13 | 3 | 1 | 1 | 5 | 1 | 1,494 | | | 4 | 1,606 | 2,930 | 693 | 267 | 2,851 | 52 | 3,021 | 67 | 798 | 432 | 180 | 3,969 | 568 | 141 | 135 | 896 | 102 | 18,711 | | | 5 | 3,134 | 1,697 | 1,436 | 371 | 5,715 | 79 | 3,114 | 98 | 843 | 478 | 285 | 4,551 | 522 | 188 | 228 | 1,219 | 447 | 24,405 | | | 6 | 472 | 257 | 180 | 66 | 760 | 14 | 758 | 15 | 207 | 111 | 50 | 1,047 | 188 | 36 | 36 | 243 | 35 | 4,475 | | | 7 | 1,270 | 726 | 599 | 355 | 2,036 | 78 | 1,624 | 90 | 522 | 296 | 264 | 2,345 | 483 | 166 | 159 | 726 | 183 | 11,923 | | s | 8 | 531 | 339 | 269 | 72 | 840 | 13 | 831 | 18 | 235 | 120 | 52 | 1,141 | 175 | 45 | 44 | 274 | 47 | 5,046 | | Origins | 9 | 1,469 | 840 | 783 | 185 | 2,022 | 40 | 1,813 | 51 | 499 | 276 | 154 | 2,661 | 363 | 104 | 126 | 762 | 199 | 12,345 | | 0 | 10 | 670 | 398 | 325 | 95 | 1,067 | 20 | 1,054 | 24 | 290 | 155 | 80 | 1,523 | 281 | 58 | 60 | 412 | 68 | 6,579 | | | 11 | 1,363 | 807 | 689 | 130 | 1,977 | 29 | 2,056 | 34 | 548 | 295 | 129 | 3,020 | 507 | 92 | 114 | 850 | 175 | 12,815 | | | 12 | 1,702 | 1,005 | 871 | 455 | 2,676 | 108 | 2,415 | 122 | 782 | 439 | 396 | 3,496 | 823 | 250 | 274 | 1,281 | 281 | 17,376 | | | 13 | 275 | 155 | 136 | 95 | 460 | 25 | 457 | 26 | 153 | 89 | 103 | 708 | 238 | 55 | 53 | 233 | 38 | 3,297 | | | 14 | 798 | 514 | 1,122 | 103 | 1,222 | 20 | 1,313 | 30 | 359 | 193 | 88 | 1,928 | 262 | 65 | 70 | 483 | 79 | 8,648 | | | 15 | 673 | 426 | 319 | 65 | 866 | 14 | 942 | 18 | 283 | 138 | 80 | 1,648 | 254 | 50 | 79 | 516 | 67 | 6,439 | | | 16 | 2,003 | 1,227 | 1,020 | 210 | 2,632 | 48 | 2,744 | 58 | 831 | 408 | 252 | 4,511 | 645 | 149 | 209 | 1,400 | 286 | 18,633 | | | 17 | 7,315 | 3,766 | 3,279 | 38 | 4,271 | 10 | 1,781 | 10 | 348 | 218 | 39 | 2,772 | 282 | 22 | 154 | 572 | 2,286 | 27,163 | | | TOTAL | 26,908 | 16,203 | 13,153 | 2,509 | 29,408 | 551 | 23,935 | 660 | 6,701 | 3,649 | 2,155 | 35,335 | 5,597 | 1,423 | 1,742 | 9,873 | 4,295 | 184,096 | | | District Key | 1. Main Lodge 6. Knolls 2. Canyon Lodge 7. Main Street | | | | | | | | | | dy Rest | | an | | 16. Sno | | | | | | | - | _ | Э | | | 7. Main \$ 8. Majes | | ne. | | | Mammo | tn Road | | | 17. Exte | rnals | | | | | | 3. Eagle | : Loage
noth Slo | nes | | | Niajes Sierra | | :0 | | 13. Gateway
14. Juniper Ridge | | | | | | | | | | | | 5. North | | pua | | | 10. Sierr | | V | | | Mammo | | | | | | | | | | Source | | | aggregate | d using are | a_aggreg | ate_tables_ | | | | | | | | | | | | | | | Table VII-5
Saturday District-to-District Person-Trip Distribution Results - Change from 2009 to 2030 |--|---|-------|--------|-------|------|---|-----|--------|--|-----------|-------|-----|---------|-------|------|-----|-------|-------|--------| | | | | | | | | | | D | estinatio | ns | | | | | | | | | | DIS | TRICT | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | TOTAL | | | 1 | -372 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -369 | | | 2 | 0 | -12 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -10 | | | 3 | 5 | 3 | 1,406 | 2 | 9 | 0 | 9 | 1 | 3 | 2 | 2 | 13 | 3 | 1 | 1 | 5 | 1 | 1,465 | | | 4 | -508 | -1,274 | 431 | -35 | 1,567 | -8 | 879 | -17 | 768 | 114 | -19 | -2,101 | 35 | -150 | -30 | 330 | 15 | -3 | | | 5 | 1,956 | 990 | 1,170 | 246 | 3,774 | 53 | 2,492 | 62 | 830 | 375 | 194 | 2,591 | 371 | 88 | 151 | 1,007 | 331 | 16,683 | | | 6 | -173 | -123 | 92 | -7 | 406 | -2 | 237 | -3 | 199 | 31 | -4 | -507 | 23 | -31 | -8 | 101 | -2 | 229 | | | 7 | 96 | -34 | 310 | 99 | 1,321 | 23 | 838 | 20 | 494 | 136 | 81 | -28 | 180 | 3 | 38 | 439 | 58 | 4,075 | | ,, | 8 | -260 | -209 | 120 | -13 | 410 | -3 | 204 | -6 | 226 | 27 | -8 | -715 | 2 | -50 | -15 | 98 | -5 | -197 | | Origins | 9 | 1,073 | 585 | 685 | 152 | 1,820 | 33 | 1,552 | 41 | 495 | 236 | 126 | 1,835 | 295 | 69 | 98 | 671 | 160 | 9,928 | | ō | 10 | -212 | -169 | 164 | 7 | 582 | 1 | 347 | 0 | 280 | 50 | 7 | -659 | 40 | -38 | -6 | 183 | 4 | 580 | | | 11 | -422 | -352 | 307 | -10 | 1,069 | -3 | 682 | -7 | 530 | 94 | -4 | -1,267 | 66 | -78 | -20 | 357 | 3 | 944 | | | 12 | 24 | -131 | 399 | -164 | 1,580 | -37 | 930 | -56 | 702 | 74 | -99 | -811 | 45 | -153 | -51 | 592 | 108 | 2,950 | | | 13 | -112 | -92 | 36 | 8 | 255 | 3 | 128 | 0 | 140 | 21 | 13 | -284 | 57 | -10 | 3 | 113 | -4 | 276 | | | 14 | -335 | -276 | -34 | -22 | 638 | -5 | 375 | -10 | 344 | 48 | -16 | -1,081 | 10 | -67 | -20 | 167 | -7 | -293 | | | 15 | -150 | -141 | 158 | -1 | 518 | 0 | 357 | -2 | 274 | 50 | 3 | -434 | 58 | -28 | 1 | 253 | 3 | 917 | | | 16 | 923 | 485 | 790 | 100 | 2,121 | 23 | 1,910 | 26 | 814 | 280 | 127 | 1,630 | 360 | 29 | 105 | 1,032 | 191 | 10,947 | | | 17 | -893 | -1,176 | 790 | 5 | 1,718 | 1 | 745 | 0 | 343 | 100 | 6 | -771 | 7 | -48 | -29 | 255 | 453 | 1,508 | | | TOTAL | 639 | -1,925 | 6,825 | 366 | 17,790 | 79 | 11,687 | 50 | 6,442 | 1,637 | 409 | -2,588 | 1,552 | -462 | 219 | 5,602 | 1,310 | 49,631 | | | District Key 1. Main Lodge 2. Canyon Lodge 3. Eagle Lodge 4. Mammoth Slopes 5. North Village | | | | | 6. Knolls 7. Main Street 8. Majestic Pines 9. Sierra Star 10. Sierra Valley | | | 11. Shady Rest / Meridian
12. Old Mammoth Road
13. Gateway
14. Juniper Ridge
15. Old Mammoth | | | | 16. Sno | | | | | | | #### **MODE SPLIT** The 2030 mode split by TAZ is mapped and shown in Figure VII-3. The transit share is high in the same locations as in 2009, including the four ski area gateways/portals and Main Street. There are also forecast transit mode share increases in the Sierra Star, Juniper Ridge, and Snowcreek neighborhood districts. Overall, the transit share in 2030 is 18 percent for all trip purposes, with home-based recreation having the largest share at 36 percent. Table VII-6 shows the 2030 results by trip purpose. In comparison to the 2009 results, presented in an earlier chapter, there is a 1.6 percent increase in transit mode share for home-based recreation trips and 0.9 percent increase in transit mode share for home-based shopping trips. Other trip purposes hold steady or have negligible decreases in their transit mode share. These 2030 results show consistent patterns and reasonable shifts in transit mode share in comparison to 2009 results. Table VII-7 shows the transit mode share at the four ski area portals. In comparison to 2009 results, volumes and transit shares for the Main Lodge and Canyon Lodge remain relatively unchanged. Although the Eagle Lodge and North Village see substantial increases in the number of transit trips, the persons in vehicles increases a greater amount, resulting in a decrease in transit mode share for those two ski area portals. | Table VII-6
2030 Mode Choice By Trip Purpose | | | | | | | | | | | | | |---|---------|---------|---------|---------|---------|--|--|--|--|--|--|--| | Daily Person-Trips by Mode Mode Split | | | | | | | | | | | | | | Trip Purpose | Vehicle | Transit | Total | Vehicle | Transit | | | | | | | | | Home-Based Recreation | 36,675 | 20,678 | 57,354 | 63.9% | 36.1% | | | | | | | | | Home-Based Shopping | 27,894 | 900 | 28,794 | 96.9% | 3.1% | | | | | | | | | Home to Work | 13,073 | 248 | 13,321 | 98.1% | 1.9% | | | | | | | | | Home-Based Other | 43,251 | 1,544 | 44,794 | 96.6% | 3.4% | | | | | | | | | Other-to-Other | 37,410 | 2,423 | 39,833 | 93.9% | 6.1% | | | | | | | | | Totals | 158,303 | 25,794 | 184,096 | 86.0% | 14.0% | | | | | | | | | Source: LSC, 2010. | - | | _
 | | | | | | | | | | Table VII-7
2030 Mode Choice at Ski Area Gateways
(All Trip Purposes) | | | | | | | | | | | | | |---|------|-----------|--------------|--------|------------|---------|--|--|--|--|--|--| | Cataman | TA 7 | Daily Per | rson-Trips b | y Mode | Mode Split | | | | | | | | | Gateway | TAZ | Vehicle | Transit | Total | Vehicle | Transit | | | | | | | | Main Lodge | 1 | 10,040 | 5,243 | 15,284 | 65.7% | 34.3% | | | | | | | | Canyon Lodge | 42 | 6,157 | 2,502 | 8,659 | 71.1% | 28.9% | | | | | | | | Eagle Lodge | 130 | 5,422 | 1,901 | 7,323 | 74.0% | 26.0% | | | | | | | | North Village | 28 | 4,683 | 1,942 | 6,625 | 70.7% | 29.3% | | | | | | | | Source: LSC, 2010. | | | | | | | | | | | | | #### **ASSIGNMENT** As was done for the existing base year, the same procedures were run on the future base year to assign trips to roadway links and transit routes. The following is a summary of the overall results for 2030: - Total Vehicle-Trips = 84,417 - Daily Vehicle-Miles Traveled (VMT) = 179,708 - Daily Vehicle-Hours Traveled (VHT) = 13,761 - Average Vehicle Speed (mph) = 26.9 The above results are a key baseline for comparison of different future transportation scenarios. The daily average network speed drops slightly from 27.0 to 26.9 mph, which is expected given greater congestion during portions of the typical Saturday. When the number of trips is divided into the VMT, the average trip distance is 2.1 miles. This 2030 result is 0.3 miles shorter than the 2009 existing base average of 2.4 miles. This is reflective of more short-distance trips being made within localized areas which see greater development (i.e., North Village). #### **Future Traffic Assignment Results** #### **Daily Traffic Assignment Results** Table VII-8 shows the two-way volumes on roadways throughout the Town of Mammoth Lakes. The table also compares existing base to future base volumes. Overall, roadway volumes are expected to increase 35 percent by 2030. On some roadways, the increases are more pronounced, such as on segments of Minaret Road, Old Mammoth Road, and Forest Trail. Figure VII-4 presents the picture of traffic volumes along all roadway links. Most traffic continues to use streets that had high volumes in 2009. **Table VII-8** Daily Vehicular Assignment Comparison - Base vs. Future Buildout Existing **Actual** Within Future Percent Model Acceptable Link No. Street Name Daily **Error** Acceptable Model Daily Change vs. Daily Error Volume Volume **Existing** Error? Volume 17 Canyon Blvd. 3,730 3,943 5.7% 50% Yes 3,898 -1% 50% 30 1,008 2.2% Forest Trail 1,030 Yes 1,842 83% 33 Forest Trail 630 1,260 100.0% 100% Yes 1,535 22% 55 4,783 23.5% 25% Lake Mary Road 6,250 Yes 5,143 8% 167 Minaret Road 4,750 4,664 1.8% 25% Yes 11,466 146% 186 44.5% 50% Yes Forest Trail 2,510 3,626 4,628 28% 206 1,180 -32% Sierra Park Road 1,381 17.1% 50% Yes 940 224 Minaret Road 4,150 4,212 1.5% 25% Yes 10,058 139% 326 **Davison Road** 760 1,284 69.0% 100% Yes 1,769 38% 350 Chateau Road 1,270 1,297 2.1% 50% Yes 1,288 -1% 3.9% 361 Meridian Blvd. 6,070 6,304 25% Yes 11,306 79% 376 Old Mammoth Road 4,830 5,019 3.9% 25% Yes 7,371 47% 377 Old Mammoth Road 4,720 5,019 6.3% 25% Yes 7,371 47% 397 37.9% Kelley Road 1,500 2,068 50% Yes 2,468 19% 415 Main Street 13,080 14,450 10.5% 15% 15,349 Yes 6% 467 25% Yes 9,875 Minaret Road 9,580 9,396 1.9% 5% 468 Forest Trail 1,080 1,490 38.0% 50% Yes 5,248 252% Meridian Blvd. 5,029 25% 8,040 511 4,900 2.6% Yes 60% 525 Sawmill Cutoff Road 72 79.3% 100% 59 -18% 350 Yes 541 Minaret Road 6,980 6,306 9.6% 25% Yes 15,240 142% 552 Highway 203 3,670 3,925 7.0% 50% Yes 4,395 12% 557 Mammoth Scenic Loop 240 286 19.3% 100% Yes 318 11% 602 9,012 Old Mammoth Road 10,250 12.1% 15% Yes 12,435 38% 621 4,010 4,288 6.9% 25% 4,686 9% Highway 203 Yes 622 Highway 203 4,010 4,288 6.9% 25% Yes 4,686 9% 37165198 Highway 203 3,924 6.9% 50% Yes 4,392 3,670 12% 37165202 Meridian Blvd. 2,780 3,481 25.2% 50% Yes 4,608 32% Chateau Road 1,480 1,679 13.5% 50% 1,440 -14% 37165216 Yes 37165365 Berner Street 170 187 10.0% 100% Yes 2,145 1047% 37165374 Minaret Road 7,910 9,292 17.5% 25% Yes 13,219 42% 25% 9,376 Canyon Blvd. 6,630 8,182 23.4% Yes 15% 37165376 37165509 Highway 203 6,530 7,988 22.3% 25% Yes 8,844 11% 7.6% 37165517 Main Street 16,560 17,825 10% Yes 20,195 13% 37165544 Lake Mary Road 2,100 1,131 46.1% 50% Yes 1,182 5% 37165559 Old Mammoth Road 5,200 6,477 24.5% 25% Yes 8,277 28% Meridian Blvd. 37165589 2,590 3,192 23.2% 50% 4,436 39% Yes 6,470 37165631 Meridian Blvd. 6,731 4.0% 25% Yes 7,894 17% 37165644 Old Mammoth Road 10,590 10,326 2.5% 15% Yes 12,071 17% Total 174,210 184,829 6.1% 249,494 35% 4.4% **Total for Key Roadways** 122,530 127,864 Source: LSC, 2010. #### Peak-Hour Traffic Assignment Results Table VII-9 shows the two-way peak-hour volumes on roadways throughout the Town of Mammoth Lakes. The table also compares existing base to future base volumes in the peak hour. Overall, peak-hour volumes are expected to increase 35 percent by 2030. Portions of Meridian Boulevard are forecast to experience 35 to 64 percent increases in peak-hour traffic volumes. Portions of Minaret Road are forecast to experience 89 to 131 percent increases in peak-hour traffic volumes. Several segments of Old Mammoth Road are forecast to experience 47 to 58 percent increases in peak-hour traffic volumes. Figure VII-5 presents the picture of peak-hour traffic volumes along all roadway links. Table VII-9 Peak-Hour Vehicular Assignment Comparison - Base vs. Future Buildout | Link No. | Street Name | Actual Peak-
Hour
Volume | Existing
Model Peak
Hour
Volume | Error | Acceptable
Error | Within
Acceptable
Error? | Future
Model Peak-
Hour
Volume | Percent
Change vs.
Existing | |----------------------|-------------------------------|--------------------------------|--|--------------|---------------------|--------------------------------|---|-----------------------------------| | 17 | Canyon Blvd. | 438 | 530 | 21.1% | 50% | Yes | 602 | 14% | | 30 | Forest Trail | 157 | 227 | 44.6% | 50% | Yes | 289 | 27% | | 33 | Forest Trail | 81 | 18 | 77.9% | | Yes | 24 | 34% | | 55 | Lake Mary Road | 420 | 359 | 14.5% | | Yes | 364 | 1% | | 160 | Main Street | 830 | 1,026 | 23.6% | | Yes | 1,077 | 5% | | 167 | Minaret Road | 475 | 449 | 5.4% | | Yes | 1,040 | 131% | | 168 | Minaret Road | 1,035 | 908 | 12.3% | | Yes | 1,267 | 40% | | 169 | Minaret Road | 810 | 774 | 4.4% | | Yes | 1,335 | 72% | | 177 | Sierra Park Road | 155 | 232 | 49.5% | | Yes | 128 | -45% | | 179 | Tavern Road | 99 | 105 | 5.8% | | Yes | 162 | 55% | | 186 | Forest Trail | 340 | 402 | 18.3% | | Yes | 446 | 11% | | 200 | Tavern Road | 59 | 29 | 50.1% | | Yes | 35 | 19% | | 206 | Sierra Park Road | 123 | 164 | 33.2% | | Yes | 121 | -26% | | 212 | Meridian Blvd. | 810 | 768 | 5.1% | | Yes | 791 | 3% | | 224 | Minaret Road | 389 | 440 | 13.1% | | Yes | 930 | 111% | | 326 | Davison Road | 76 | 85 | 12.4% | | Yes | 127 | 49% | | 328 | Lake Mary Road | 1,136 | 1,145 | 0.8% | | Yes | 1,485 | 30% | | 349 | Meridian Blvd. | 470 | 375 | 20.1% | 25% | Yes | 614 | 64% | | 350 | Chateau Road | 117 | 75 | 36.0% | | Yes | 98 | 31% | | 361 | Meridian Blvd. | 606 | 618 | 1.9% | | Yes | 922 | 49% | | 376 | Old Mammoth Road | 548 | 519 | 5.2% | | Yes | 761 | 47% | | 377 | Old Mammoth Road | 472 | 519 | 10.0% | | Yes | 761 | 47% | | 441 | Lake Mary Road | 374 | 350 | 6.3% | | Yes | 405 | 16% | | 441 | Minaret Road | 1,001 | 893 | 10.8% | | Yes | 935 | 5% | | 468 | Forest Trail | 157 | 171 | 9.2% | | Yes | 232 | 36% | | 472 | Main Street | 1,411 | 1,457 | 3.3% | | | 2,029 | 39% | | 512 | Meridian Blvd. | 488 | 458 | 6.1% | | Yes | 693 | 51% | | 525 | Sawmill Cutoff Road | 35 | 11 | 67.2% | | Yes | 9 | -19% | | 541 | Minaret Road | 717 | 781 | 8.9% | | Yes | 1,477 | 89% | | 557 | Mammoth Scenic Loop | 22 | 29 | 33.7% | 100% | Yes | 33 | 11% | | 602 | Old Mammoth Road | 846 | 737 | 12.9% | | Yes | 1,162 | 58% | | 37165216 | Chateau Road | 148 | 98 | 34.0% | | Yes | 101 | 3% | | 37165325 | Lake Mary Road | 372 | 370 | 0.5% | | Yes | 504 | 36% | | 37165327 | Lake Mary Road | 1,293 | 1,184 | 8.4% | | Yes | 1,709 | 44% | | 37165692 | Old Mammoth Road | | | / | | | | 2111 | | 37165365 | Berner Street | 1,015 | 942 | 7.2%
4.3% | | | 1,231
152 | 31%
460% | | 37165370 | Minaret Road | 955 | 813 | 14.9% | | | 1,002 | 23% | | 37165376 | Canyon Blvd. | 662 | 776 | 17.3% | | | 994 | 28% | | 37165415 | North Majestic Pines Drive | 147 | 172 | 17.1% | | | 188 | 9% | | 37165517 | , | | | 0.1% | | | | 17% | | | Main Street | 1,413 | 1,412 | | | | 1,656 | | | 37165531
37165544 | Main Street
Lake Mary Road | 1,440
223 | 1,400
138 | 2.8% | | | 1,732
145 | 24%
5% | | | · | 1 | | 38.1% | | Yes | | | | 37165559 | Old Mammoth Road | 529 | 595 | 12.5% | | | 760
1.006 | 28% | | 37165573 | Meridian Blvd. | 726 | 813 | 12.0% | | | 1,096 | 35% | | 37165589 | Meridian Blvd | 234 | 304 | 30.1% | | | 465 | 53% | | 37165634 | Meridian Blvd. | 756 | 714 | 5.6% | | | 703 | -1% | | 37165644 | Old Mammoth Road | 897 | 828 | 7.7% | | | 1,091 | 32% | | 37165670 | Minaret Road | 910 | 1,134 | 24.6% | | Yes | 1,715 | 51% | | Source: LSC, 20 | Total | 26,443 | 26,377 | 0.2% | | | 35,603 | 35.0% | #### **Future Transit Assignment** Table VII-10 shows a comparison of existing base (2009) and future base (2030) transit assignment results. Like traffic volumes, transit trips are expected to increase 35 percent overall by 2030. The Green Line—with service between Old Mammoth Road and Eagle Lodge along Meridian Boulevard—is expected to see a greater than average increase in ridership by 2030. The Red Line and Yellow Line will see an average increase in ridership by 2030, serving the North Village area. The results suggest that there may be a shift from bus
to gondola between North Village, through Mammoth Slopes, and reaching the Canyon Lodge. | Table VII-10
Transit Boarding Comparison - Base vs. Future Buildout | | | | | | | | | | | | | |--|---------------------|--------------------------------|------------------|------------------------------|-----------------------------------|--|--|--|--|--|--|--| | Route | Actual
Boardings | Existing
Model
Boardings | Percent
Error | Future
Model
Boardings | Percent
Change vs.
Existing | | | | | | | | | Red Line | 6,700 | 6,710 | 0.1% | 9,160 | 36.5% | | | | | | | | | Green Line | 1,800 | 1,370 | 23.9% | 2,450 | 78.8% | | | | | | | | | Blue Line | 2,400 | 1,240 | 48.3% | 990 | -20.2% | | | | | | | | | Yellow Line | 800 | 1,250 | 56.3% | 1,680 | 34.4% | | | | | | | | | Orange | 100 | 210 | 110.0% | 220 | 4.8% | | | | | | | | | Mid-Town Lift | n/a | 330 | | 250 | -24.2% | | | | | | | | | Gon dola | n/a | 2,740 | | 3,090 | 12.8% | | | | | | | | | Total | 11,800 | 10,780 | 8.6% | 14,500 | 34.5% | | | | | | | | | Source: LSC, 2010. | | | | | | | | | | | | | #### **SUMMARY** The following summarizes the findings of the future year model validation: - Permanent resident population is estimated to grow 36 percent by 2030. - Total trips made by residents and visitors is forecast to grow 37 percent. - North Village sees the largest increase in trip making. - Main Street, Sierra Star, and Snowcreek districts also see substantial increases in trip making. - Vehicular and transit volumes are both forecasted to increase 35 percent. - Because lower-occupancy vehicle-trips increase more than highoccupancy trips, there will be little outward sign of a shift from vehicle to transit use. - Meridian Boulevard, Minaret Road, and Old Mammoth Road are forecast to see the highest increases in peak-hour traffic volumes. - The Green Line—with service along Meridian Boulevard—is expected to have the highest growth in transit volumes. - Based on the results, there is a forecast shift from bus to gondola ridership in the area between North Village and Canyon Lodge. Overall the model processes future land uses, trips, and assigns them to the network in expected proportions compared to the existing base (2009) model. These results indicate the model is performing as it should and is ready to be used to test future land use and transportation network scenarios. # **Chapter VIII** #### CHAPTER VIII ## **Future Scenario Results** This chapter presents the results of the future base-year model discussed in the previous chapter and analysis of several variations/enhancements to the base-year model representing some future alternatives. The base-year model represents the loading of additional trips to be generated by the anticipated future land uses to the **current** transportation system. The overall purpose of this project is to use a calibrated model to forecast future traffic volumes and levels of congestion and to evaluate alternatives. As the future base model does not include any transportation system capacity improvements, enhancements, or other changes, it is essentially the "do-nothing" alternative. The only exception to this is the addition of Snowcreek transit. This extension of the red line into Snowcreek (down to TAZs 160 and 161) was included in the future base model since it is a requirement of Snowcreek to add this extension. As stated in Chapter I, the purpose of this modeling effort is to be able to test and assess changes to the land use and transportation system, and to thereby inform decision-makers for the benefit of the Town of Mammoth Lakes. The model is designed and intended to assist in making the types of decisions that go beyond site-level traffic impact studies usually required as part of the development review process. The future base model results present a scenario useful in identifying areas of congestion that may occur if land use and trip generation increase without any expansion or increase in the carrying capacity of the transportation system (with the exception of the addition of Snowcreek transit). The results presented in this chapter also show the existing conditions for comparison to forecasted future conditions. The analysis of several scenarios or alternatives to the future base-model alternative has been performed to identify the relative effectiveness of each in miti- gating or minimizing further degradation of level of service of congested streets and intersections identified in the existing and future base-year model. Two of the alternatives also present analysis of conditions with higher levels of development and trip generation in certain areas than used in the future base model combined expansion of the transportation system. # DESCRIPTION OF SCENARIOS/CHANGES TO THE FUTURE BASE MODEL The following describes the five alternatives evaluated using modified versions of the Future Base Model. Table VIII-1 summarizes these descriptions. #### Scenario 1 This scenario models the addition of new streets (to the future base model) expected to be implemented by Other Planned Development. These added streets are depicted in Figure VIII-1. Alternative 1 does not model all the new streets shown in this figure, only the salmon-colored streets that would be "new streets implemented by Other Planned Development." This alternative also maintains the Main Street frontage roads. This scenario uses the same land use assumptions as the future base model. #### Scenario 2 This scenario models the addition of new streets (to the future base model) recommended in the Downtown Neighborhood District Plan (DNDP)/Mobility Plan Complete Circulation Network. These added streets are depicted in Figure VIII-1. As in the case of Scenario 1, this alternative also maintains the Main Street frontage roads and uses the same land use assumptions as the future base model. #### Scenario 3 Scenario 3 is the same as Scenario 2 with the exception of the Main Street front-age roads. These have been removed in the Scenario 3 model. As with the previous two scenarios, the same land use assumptions as the future base model were used. # Table VIII-1 Buildout Traffic Model Alternatives for LSC Contract | | Alt. | Description | Future Roadway
Network | Future Land Use
Assumptions | Other
Assumptions | | | | | | | |---|---|---|--|---|------------------------|--|--|--|--|--|--| | X | Buildout
"Baseline" +
Existing Network | This alternative models buildout with the existing roadway network. Land use assumptions are based on PAOT and traffic model for residential uses and commercial/industrial land uses. | Existing network | Residential: use PAOT assumptions for units and rooms. Commercial: Approved projects + 0.25 FAR for vacant/redevelopment land in CG/CL zones Industrial: 0.9 FAR for vacant land in Industrial zone | Transit share
= 14% | | | | | | | | 1 | Buildout
"Baseline" +
"Future
Development
Roads" | This alternative models the existing roadway network plus roads that are reasonably expected to be built with future development. (The frontage roads are maintained in this alternative.) Land use assumptions are the same as above. | Existing network plus
Future Development
Roads | Same as above | Transit share
= 14% | | | | | | | | 2 | Buildout "Baseline" + "Complete Circulation Network" | This alternative models the existing roadway network plus roads that are recommended in the DNDP/Mobility Plan Complete Circulation Network. (The frontage roads are maintained in this alternative.) Land use assumptions are the same as above. | Existing network plus
"Complete Circulation
Network" | Same as above | Transit share
= 14% | | | | | | | | 3 | Buildout "Baseline" + "Complete Circulation Network" (No Frontage Roads) | This alternative models the existing roadway network plus roads that are recommended in the DNDP/Mobility Plan Complete Circulation Network. The frontage roads are removed in this alternative. Land use assumptions are the same as above. | Existing network plus
"Complete Circulation
Network" – Frontage
Roads | Same as above | Transit share
= 14% | | | | | | | | 4 | Buildout "DNDP" + "Complete Circulation Network" (No Frontage Roads) | This alternative models the existing roadway network plus roads that are recommended in the Mobility Plan/DNDP Complete Circulation Network. The frontage roads are removed in this alternative. Land use assumptions are increased from the alternatives above to include rooms/units and commercial space possible under the DNDP. | Existing network plus
"Complete Circulation
Network" minus
Frontage Roads | Additional units/rooms and commercial square footage available due to ROW relinquishment in DNDP Study Area (4 acres/175,000 sq. ft. additional) between
Manzanita and Sierra Park). Residential: Additional 320 rooms possible at 80 rpa Commercial (CG/CL): 175,000 sq. ft additional. Need to determine appropriate FAR. RV Park – New Sports/Events Park FS Compound – New Civic Center, Retail and MF Res units 30,000 sq. ft. additional retail 82 MF units Industrial: 0.9 FAR for vacant land in Industrial zone | Transit share
= 14% | | | | | | | | 5 | Buildout "DNDP " + "Complete Circulation Network" (No Frontage Roads) + Increased Transit | Roadway network is the same as Alternative 4, but transit ridership is increased. Land use assumptions are the same as Alternative 4. | Same as Alternative
4 with additional
transit | Same as Alternative 4 | Transit Share = 17% | | | | | | | Future Scenario Results (This page intentionally left blank.) ## PREFERRED ALTERNATIVE: CIRCULATION NETWORK Figure VIII-1□ Future Circulation Network #### Scenario 4 Scenarios 4 considers land use changes to the future base model assumptions to include rooms/units and commercial space possible under the DNDP. Table VIII-1 presents a summary of the land use assumptions and land use quantities. Appendix D includes more detailed information regarding the assumptions. The land-use changes include: - Relatively modest increases in land use along Main Street between the RV park and Mountain Boulevard area associated with the assumptions/recommendations of the DNDP involving right-of-way (ROW) relinquishment, which frees up approximately four acres of additional land. - Recommendations for a sports/event park on the site of the current RV park and Town/County property (TAZs 87 and 90). - The recommended addition of a Civic Center and employee housing on the existing Forest Service compound/campground (TAZs 38 and 39). For the Civic Center and sports/events park, it is assumed that these uses would not be very productive on the design day (winter Saturday) so a small amount of retail has been added as a proxy. In addition to the land use changes, this scenario models the addition of new streets that are recommended in the DNDP/Mobility Plan Complete Circulation Network to the future base model. These added streets are depicted in Figure VIII-1. As with Scenario 3, this alternative also assumes the removal of the frontage roads. #### Scenario 5 Scenario 5 is the same as Scenario 4 with the exception of an increased transit ridership assumption. Alternative 5 adds the transit route between Snowcreek and Main Lodge along Minaret referred to as the "Orange Line." Stops were modeled within Snowcreek, at Meridian, near the Village, and at Main Lodge line from Snowcreek to the village and then the Main Lodge. The model generated ridership along this route of approximately 2,000 passengers per day. The overall transit mode split for this scenario rose from 14 percent in previous scenarios to 17 percent in Scenario 5. #### **MODEL RESULTS** The modeled results of the existing, future base model, and Scenarios 1 through 5 are summarized in Tables VIII-2 and VIII-3. Results are expressed in terms of street segment/link volume, segment volume-to-capacity ratios, and intersection level of service for signalized intersections and critical approaches at unsignalized intersections. #### Peak-Hour Link Volumes and Volume-to-Capacity Ratios Table VIII-2 contains the study street segment model-forecasted peak-hour volumes (per lane, single direction of travel) and corresponding volume-to-capacity ratios for the existing condition, future baseline condition, and future conditions for each of the five modeled alternatives. The specific street segments are identified by the "link number" shown in the first column of the table. For reference, a printout of the model showing the street network and corresponding link numbers is contained in the appendix. Streets such as Minaret Road appear in multiple rows in the table as the street has been broken into separate segments with separate link numbers for analysis purposes. The assumed capacity of segments used in this calculation is based on the facility type of the street segment. These capacity values are identified in Table II-1 "Road Network Characteristics." Volume-to-capacity ratios of 1.0 or greater have been highlighted in the table to indicate that the model-forecasted volume is equal to or greater than the assumed capacity. Generally, the higher the volume-to-capacity ratio, the greater the level of congestion. Although this report assigns a capacity value based on facility type/functional classification, individual street capacities vary depending on characteristics, including on-street parking, street width, number of driveways, spacing of intersections, horizontal and vertical alignment, auxiliary turn lanes, and medians. In urban areas, intersection level of service/capacity analysis is often a better indicator of the capacity limitations of the network, as intersections tend to control the capacity with most of the delay and congestion occurring at them. However, street segment volume-to-capacity ratios give a general indication if a street is forecasted to carry traffic levels at or above the generally accepted hourly, industry-recommended volumes. #### **Peak-Hour Intersection Level of Service** Table VIII-3 presents calculated peak-hour intersection level of service (LOS). The level of service values corresponding to the signalized intersections identified in the top part of the table under the heading "Signalized" represent the levels of service for the entire intersection. The level of service values corresponding to the unsignalized intersections identified in the bottom part of the table under the heading "Unsignalized" represent the levels of service for the "critical approaches" at the unsignalized intersections analyzed. For example, LOS F is listed for the Old Mammoth Road/Chateau Road intersection under Alterative 1. This level of service applies to the eastbound approach only. The westbound approach is LOS C, and the northbound and southbound left-turn movements are LOS A. The intersection volume worksheets and Synchro models for each alternative are also attached. In addition to the LOS rating, Table VIII-3 includes the overall average delay values (seconds per vehicle) for the signalized intersections and average critical approach delay (seconds per vehicle) values for the unsignalized intersections. For those unsignalized intersections where the Level of Service is "F," the approach volume-to-capacity ratio is shown instead of the delay since it is a better relative measure for comparison of how the intersection approach would operate. In Synchro, once the movement or approach delays exceed 120 seconds per vehicle, they tend to increase exponentially and provide unrealistic results. The volume-to-capacity ratios provide a better measure for comparison of scenarios and an indication of how far above capacity the expected demand will be. The level of service values of "F" do not necessarily indicate definitive "failure" of the intersection, or even the critical approach. It is simply a calculation of the estimated average delay per vehicle during the Saturday peak hour. The level of service values in the "E" and "F" ranges and volume-to-capacity ratios identify potential intersection approaches which may require closer monitoring or evaluation to determine if mitigation will become necessary. LSC recommends considering the approach volume of traffic for which the level of service applies. Site- specific conditions should be considered, such as nearby traffic signals that may cause gaps in traffic allowing side street traffic to enter the intersection with lower average delay than Synchro LOS analyses. Also, consideration should be given to available alternatives to those intersections with high delay approaches, as there may be alternate routes available to motorists that do not include a high-delay left turn or through movement from a stop-sign-controlled intersection approach. Alternative 3 provides the best overall performance for all of the analyzed intersections and does not have any volume-to-capacity ratios above 3.00. The total delay is significantly lower than some of the other alternatives. Future Scenario Results (This page intentionally left blank.) Table VIII-2 Future Alternatives Comparison - Segment Capacity | | | Future Atternatives Comparison - Segment Capacity |----------|----------------------------|---|-----------------------|----------|-----------|----------------|-------------------|-------------|-------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|--| | | | | | | Existing | | | Base Future | | Alternative 1 | | Alternative 2 | | Alternative 3 | | Alternative 4 | | Alternative 5 | | | | I Calaba | Stored Nove | 6 | | | Peak-Hour | Model Peak- | Volume/ | Peak-Hour | Volume/ | | | Link No. | Street Name | from | to | Capacity | Volume | Hour
Volume | Capacity
Ratio | Volume | Capacity
Ratio | | | 17 | Canyon Blvd. | Lakeview Blvd. | Forest Trail | 500 | 438 | 634 | 1.27 | 619 | 1.24 | 567 | 1.13 | 625 | 1.25 | 593 | 1.19 | 606 | 1.21 | 578 | 1.16 | | | 30 | Forest Trail | Sierra Blvd. | Rusty Ln. | 500 | 157 | 174 | 0.35 | 336 | 0.67 | 287 | 0.57 | 342 | 0.68 | 309 | 0.62 | 329 | 0.66 | 320 | 0.64 | | | 33 | Forest Trail | Crest Ln. | Forest Pl. | 500 | 81 | 20 | 0.04 | 24 | 0.05 | 51 | 0.10 | 83 | 0.17 | 75 | 0.02 | 75 | 0.00 | 70 | 0.04 | | | 55 | Lake Mary Road | Hidden Valley Rd. | Canyon Blvd. | 800 | 420 | 327 | 0.04 | 396 | 0.50 | 367 | 0.10 | 318 | 0.40 | 352 | 0.13 | 378 | 0.13 | 369 | 0.14 | | | 160 | Main Street | Old Mammoth Rd. | Sierra Manor Rd. | 3,200 | 830 | 966 | 0.41 | 1,070 | 0.33 |
1,101 | 0.40 | 1,182 | 0.40 | 1,181 | 0.44 | 1,322 | 0.47 | 1,301 | 0.40 | | | 167 | Minaret Road | Evening Star | Meridian Blvd. | 1,400 | 475 | 430 | 0.31 | 993 | 0.71 | 1,019 | 0.73 | 896 | 0.64 | 907 | 0.65 | 893 | 0.41 | 831 | 0.59 | | | 168 | Minaret Road | Main St. | Forest Trail | 1,500 | 1,035 | 934 | 0.62 | 1,238 | 0.83 | 1,236 | 0.73 | 1,218 | 0.81 | 1,222 | 0.81 | 1,219 | 0.81 | 1,124 | 0.75 | | | 169 | Minaret Road | Meridian Blvd. | E. Bear Lake Dr. | 1,400 | 810 | 710 | 0.51 | 1,260 | 0.90 | 1,256 | 0.90 | 1,278 | 0.91 | 1,230 | 0.88 | 1,246 | 0.89 | 1,158 | 0.83 | | | 177 | Sierra Park Road | Main St. | Tavern Rd. | 500 | 155 | 198 | 0.40 | 119 | 0.24 | 136 | 0.27 | 204 | 0.41 | 214 | 0.43 | 263 | 0.53 | 247 | 0.49 | | | 179 | Tavern Road | Old Mammoth Rd. | Laurel Mtn. Rd. | 500 | 99 | 98 | 0.20 | 180 | 0.36 | 240 | 0.48 | 105 | 0.41 | 177 | 0.35 | 299 | 0.60 | 214 | 0.43 | | | 186 | Forest Trail | Hillside Dr. | Minaret Rd. | 500 | 340 | 423 | 0.85 | 479 | 0.96 | 423 | 0.85 | 447 | 0.89 | 446 | 0.89 | 416 | 0.83 | 405 | 0.81 | | | 200 | Tavern Road | Old Mammoth Rd. | Sierra Manor Rd. | 500 | 59 | 58 | 0.12 | 44 | 0.09 | 60 | 0.12 | 12 | 0.03 | 14 | 0.03 | 16 | 0.03 | 16 | 0.03 | | | 206 | Sierra Park Road | Meridian Blvd. | Sierra Nevada Rd. | 500 | 123 | 191 | 0.38 | 122 | 0.24 | 127 | 0.25 | 179 | 0.36 | 176 | 0.35 | 215 | 0.43 | 203 | 0.41 | | | 212 | Meridian Blvd. | Azimuth Dr. | Old Mammoth Rd. | 1,400 | 810 | 698 | 0.50 | 759 | 0.54 | 730 | 0.52 | 741 | 0.53 | 703 | 0.50 | 767 | 0.55 | 750 | 0.54 | | | 224 | Minaret Road | Meadow Ln. | Old Mammoth Rd. | 700 | 389 | 429 | 0.61 | 878 | 1.25 | 897 | 1.28 | 798 | 1.14 | 808 | 1.15 | 805 | 1.15 | 759 | 1.08 | | | 326 | Davison Road | Lee Rd. | Lake Mary Rd. | 400 | 76 | 85 | 0.21 | 125 | 0.31 | 124 | 0.31 | 159 | 0.40 | 149 | 0.37 | 156 | 0.39 | 153 | 0.38 | | | 328 | Lake Mary Road | Canyon Blvd. | Minaret Rd. | 1,600 | 1,136 | 1,211 | 0.76 | 1,454 | 0.91 | 1,499 | 0.94 | 1,450 | 0.91 | 1,451 | 0.91 | 1,542 | 0.96 | 1,423 | 0.89 | | | 349 | Meridian Blvd. | Majestic Pines Dr. | N. Majestic Pines Dr. | 1,400 | 470 | 391 | 0.28 | 696 | 0.50 | 695 | 0.50 | 690 | 0.49 | 688 | 0.49 | 689 | 0.49 | 658 | 0.47 | | | 350 | Chateau Road | Minaret Rd. | Azimuth Dr. | 500 | 117 | 73 | 0.15 | 102 | 0.20 | 108 | 0.22 | 89 | 0.18 | 91 | 0.18 | 96 | 0.19 | 93 | 0.19 | | | 361 | Meridian Blvd. | Sierra Star Pkwy. | Minaret Rd. | 1,400 | 606 | 622 | 0.44 | 985 | 0.70 | 1,013 | 0.72 | 920 | 0.66 | 929 | 0.66 | 960 | 0.69 | 914 | 0.65 | | | 376 | Old Mammoth Road | Sherwin Creek Rd. | Chateau Rd. | 700 | 548 | 536 | 0.77 | 783 | 1.12 | 760 | 1.09 | 683 | 0.98 | 661 | 0.94 | 732 | 1.05 | 719 | 1.03 | | | 377 | Old Mammoth Road | Minaret Rd. | Sherwin Creek Rd. | 700 | 472 | 536 | 0.77 | 783 | 1.12 | 584 | 0.83 | 585 | 0.84 | 615 | 0.88 | 690 | 0.99 | 679 | 0.97 | | | 440 | Lake Mary Road | Davidson Rd. | Kelley Rd. | 400 | 374 | 219 | 0.55 | 268 | 0.67 | 268 | 0.67 | 268 | 0.67 | 268 | 0.67 | 280 | 0.70 | 270 | 0.68 | | | 467 | Minaret Road | Mammoth Knolls Dr. | Forest Trail | 1,500 | 1,001 | 988 | 0.66 | 997 | 0.66 | 999 | 0.67 | 997 | 0.66 | 1,001 | 0.67 | 988 | 0.66 | 884 | 0.59 | | | 468 | Forest Trail | Minaret Rd. | Berner St. | 500 | 157 | 129 | 0.26 | 237 | 0.47 | 159 | 0.32 | 209 | 0.42 | 204 | 0.41 | 195 | 0.39 | 189 | 0.38 | | | 472 | Main Street | Minaret Rd. | Mountain Blvd. | 3,200 | 1,411 | 1,596 | 0.50 | 2,011 | 0.63 | 1,604 | 0.50 | 1,520 | 0.47 | 1,571 | 0.49 | 1,570 | 0.49 | 1,584 | 0.50 | | | 512 | Meridian Blvd. | Majestic Pines Dr. | Lodestar Dr. | 1,400 | 488 | 477 | 0.34 | ,
754 | 0.54 | ,
754 | 0.54 | 703 | 0.50 | 705 | 0.50 | 720 | 0.51 | 693 | 0.49 | | | 525 | Sawmill Cutoff Road | Main St. | Ritter Rd. | 400 | 35 | 12 | 0.03 | 10 | 0.02 | 23 | 0.06 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | | | 541 | Minaret Road | E. Bear Lake Dr. | Main St. | 1,400 | 717 | 718 | 0.51 | 1,382 | 0.99 | 1,181 | 0.84 | 1,299 | 0.93 | 1,145 | 0.82 | 1,138 | 0.81 | 1,020 | 0.73 | | | 557 | Mammoth Scenic Loop | Minaret Rd. | | 1,400 | 22 | 29 | 0.02 | 33 | 0.02 | 33 | 0.02 | 33 | 0.02 | 33 | 0.02 | | 0.02 | 33 | 0.02 | | | 602 | Old Mammoth Road | Meridian Blvd. | Oak Tree Way | 1,200 | 846 | 852 | 0.71 | 1,179 | 0.98 | 1,152 | 0.96 | 1,084 | 0.90 | 1,006 | 0.84 | 1,120 | 0.93 | 1,096 | 0.91 | | | 37165216 | Chateau Road | Azimuth Dr. | Old Mammoth Rd. | 500 | 148 | 99 | 0.20 | 103 | 0.21 | 97 | 0.19 | 82 | 0.16 | 82 | 0.16 | 90 | 0.18 | 88 | 0.18 | | | 37165325 | Lake Mary Road | Hidden Valley Rd. | Canyon Blvd. | 800 | 372 | 337 | 0.42 | 520 | 0.65 | 491 | 0.61 | 442 | 0.55 | 476 | 0.60 | 507 | 0.63 | 496 | 0.62 | | | | Lake Mary Road | Canyon Blvd. | Minaret Rd. | 1,600 | 1,293 | 1,251 | 0.78 | 1,678 | 1.05 | 1,724 | 1.08 | 1,674 | 1.05 | 1,675 | 1.05 | | 1.11 | 1,654 | 1.03 | | | | Berner Street | Alpine Cir. | Forest Trail | 400 | 26 | 29 | 0.07 | 162 | 0.41 | 159 | 0.40 | 161 | 0.40 | 153 | 0.38 | 152 | 0.38 | 148 | 0.37 | | | | Minaret Road | Main St. | Forest Trail | 1,500 | 955 | 860 | 0.57 | 1,011 | 0.67 | 1,010 | 0.67 | 987 | 0.66 | 996 | 0.66 | | 0.65 | 904 | 0.60 | | | | Canyon Blvd. | Hillside Dr. | Lake Mary Rd. | 800 | 662 | 875 | 1.09 | 943 | 1.18 | 1,019 | 1.27 | 1,018 | 1.27 | 985 | 1.23 | 1,045 | 1.31 | 937 | 1.17 | | | | North Majestic Pines Drive | Monterey Pine Rd. | Meridian Blvd. | 700 | 147 | 172 | 0.25 | 204 | 0.29 | 216 | 0.31 | 241 | 0.34 | 243 | 0.35 | | 0.35 | 233 | 0.33 | | | 37165517 | Main Street | Laurel Mtn. Rd | Old Mammoth Rd. | 3,200 | 1,413 | 1,468 | 0.46 | 1,644 | 0.51 | 1,552 | 0.49 | 1,650 | 0.52 | 1,612 | 0.50 | | 0.51 | 1,672 | 0.52 | | | 37165531 | Main Street | Mountain Blvd. | Sierra Blvd. | 2,800 | 1,440 | 1,518 | 0.54 | 1,774 | 0.63 | 1,982 | 0.71 | 1,906 | 0.68 | 1,942 | 0.69 | | 0.76 | 2,061 | 0.74 | | | 37165544 | Lake Mary Road | Lee Rd. | Davidson Rd. | 500 | 223 | 134 | 0.27 | 143 | 0.29 | 145 | 0.29 | 109 | 0.22 | 119 | 0.24 | 124 | 0.25 | 117 | 0.23 | | | | Old Mammoth Road | Timber Creek Rd. | Minaret Rd. | 700 | 529 | 594 | 0.85 | 762 | 1.09 | 762 | 1.09 | 691 | 0.99 | 691 | 0.99 | 718 | 1.03 | 703 | 1.00 | | | - | Meridian Blvd. | Minaret Rd. | Obsidian Pl. | 1,400 | 726 | 766 | 0.55 | 1,096 | 0.78 | 996 | 0.71 | 982 | 0.70 | 959 | 0.69 | 1,043 | 0.75 | 993 | 0.71 | | | | Meridian Blvd. | Commerce Dr. | Highway 203 | 700 | 234 | 328 | 0.47 | 448 | 0.64 | 448 | 0.64 | 456 | 0.65 | | 0.65 | | 0.66 | 461 | 0.66 | | | | Meridian Blvd. | Old Mammoth Rd. | Sierra Manor Rd. | 1,400 | 756 | 699 | 0.50 | 684 | 0.49 | 669 | 0.48 | 574 | 0.41 | | 0.38 | 548 | 0.39 | 539 | 0.39 | | | ll . | Old Mammoth Road | Meridian Blvd. | Sierra Nevada Rd. | 1,200 | 897 | 926 | 0.77 | 1,131 | 0.94 | 1,061 | 0.88 | 866 | 0.72 | | 0.82 | | 0.93 | 1,095 | 0.91 | | | | Minaret Road | E. Bear Lake Dr. | Main St. | 1,400 | 910 | 982 | 0.70 | 1,681 | 1.20 | 1,322 | 0.94 | 1,257 | 0.90 | 1,222 | 0.87 | | 0.99 | 1,098 | 0.78 | | | | Old Mammoth Road | Tavern Rd. | Main St. | 1,200 | 1,015 | 1,105 | 0.92 | 1,211 | 1.01 | 1,140 | 0.95 | | 0.64 | | | | 0.60 | 772 | 0.64 | | | | | | • • | =,=30 | =,==0 | -, | | -, | | =,= 10 | 5.50 | . 30 | 3.3. | : 20 | | . 30 | 2.30 | • • • | | | Town of Mammoth Lakes General Plan Future Scenario Results (This page intentionally left blank.) Table VIII-3 Future Alternatives Comparison - Intersection Level of Service Results (1) | Intersection | Ex | isting | Base | Future | Alter | native 1 | Alter | native 2 | Alter | native 3 | Alter | native 4 | Alteri | native 5 | |---|-------------|----------------------------|-------------|------------------------------|-------------|----------------------------|-------------|------------------------------|-------------|------------------------------|-------------|---------------------------|-------------|------------------------------| | Signalized | Overall LOS | Overall Delay (sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | Overall LOS | Overall Delay (sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | Overall LOS | Overall Delay (sec./veh.) | Overall LOS | Overall Delay
(sec./veh.) | | Lake Mary Road/Canyon Boulevard | Α | 9.2 | А | 8.8 | А | 9.4 | А | 9.4 | А | 9.2 | Α | 9.4 | Α | 9.1 | | Main Street/Minaret Road | С | 29.7 | D | 37.2 | С | 33.4 | С | 32.6 | С | 32.7 | С | 33.8 | С | 31.8 | | Main Street/Old Mammoth Road | В | 14.3 | В | 14.8 | В | 14.5 | В | 14.1 | В | 14.0 | В | 14.0 | В | 14.2 | | Meridian Boulevard/Minaret Road | В | 15.5 | С | 22.0 | С | 22.0 | С | 21.2 | С | 20.9 | С | 21.3 | С | 20.2 | | Meridian Boulevard/Old Mammoth Road | В | 19.7 | С | 22.6 | С | 21.9 | С | 22.1 | С | 20.9 | С | 22.1 | С | 21.9 | | | Critical | Critical
Approach | | Approach | Delay | Unsignalized | LOS | (sec./veh.) ⁽²⁾ | | (sec./veh.) ⁽²⁾ | LOS | (sec./veh.) | LOS | (sec./veh.) | | Minaret Road/Forest Trail | F | 0.37 | F | 1.24 | F | 0.94 | F | 1.02 | F | 1.03 | F | 0.91 | F | 0.76 | | Lake Mary Road/Davidson Road/Kelley Road | В | 12.9 | В | 14.4 | В | 14.4 | В | 14.9 | В | 14.7 | В | 14.9 | В | 14.2 | | Main Street/Mountain Boulevard | D | 32.2 | F | 1.30 | F | 2.25 | F | 1.85 | F | 2.67 | F | > 7.00 | F | 5.64 | | Main Street/Center Street | D | 31.9 | F | 1.19 | F | 7.60 | F | 6.75 | F | 1.44 | F | 1.66 | F | 1.55 | | Main Street/Forest Trail | F | 1.17 | F | 2.09 | F | 1.74 | F | 1.68 | F | 1.88 | F | 2.76 | F | 2.42 | | Main Street/Laurel Mountain Road | F | 0.87 | F | 1.46 | F | 1.08 | F | 0.87 | F | 0.94 | F | 1.86 | F | 1.37 | | Main Street/Sierra Park Road/Sawmill Cutoff | В | 13.4 | С | 16.3 | С | 16.5 | С | 16.5 | С | 16.3 | С | 16.9 | С | 16.9 | | Old Mammoth Road/Tavern Road | С | 23.9 | E | 47.9 | F | 0.55 | С | 23.8 | D | 28.6 | F | 0.60 | D | 34.6 | | Old Mammoth Road/Sierra Nevada Road | E | 35.4 | F | 1.00 | F | 0.66 | F | 0.54 | F | 0.55 | F | 0.84 | F | 0.77 | | Meridian Boulevard/Majestic Pines Drive | В | 11.0
 В | 14.4 | В | 14.2 | В | 14.0 | В | 14.0 | В | 14.1 | В | 13.8 | | Meridian Boulevard/Sierra Park Road | Α | 8.2 | Α | 8.4 | Α | 8.4 | Α | 8.4 | Α | 8.3 | Α | 8.3 | Α | 8.3 | | Old Mammoth Road/Chateau Road | С | 18.6 | F | 0.67 | F | 0.59 | D | 32.0 | D | 30.6 | Е | 42.7 | Е | 40.3 | | Old Mammoth Road/Minaret Road | В | 14.5 | F | 6.44 | F | 1.27 | F | 1.07 | F | 1.18 | F | 1.26 | F | 1.10 | Notes: Town of Mammoth Lakes General Plan ⁽¹⁾ Performed in the Synchro capacity analysis software using the 2000 Highway Capacity Manual methodology. ⁽²⁾ For unsignalized intersections with a Level of Service "F," critical approach volume-to-capacity ratio is reported instead of delay. | | | | | | | | | | Existing La | and Uses | | | | | | | | | | |----------|----------|----------|--------|----|------------|----------|----------|------------|-------------|----------|--------|--------|---------|----------|--------|--------|--------------------|-----------|-------------------| | | 1 | 3 | 4 | 5 | 7 | 10 | 11 | 13 | 21 | 23 | 31 | 32 | 33 | 34 | 36 | 37 | 39 | 40 | 41 | | | SF | MF | Mobile | | | Lodging | Resort | Retail/ | Light | Public | Public | High | | | Post | | Downhill
Skiing | Downhill | Cross-
Country | | TAZ | Resident | Resident | Home | | MF Visitor | Hotel | Hotel | Commercial | Industrial | Utility | School | School | College | Hospital | Office | Church | Employees | Skiers | Skiers | | 1 2 | 0
66 | | 0 | | | 0 | 234
0 | | | | 0 | | | | | | | 9950
0 | 0 | | 3 | 68 | | 0 | | | 0 | 0 | 0 | | | 0 | | | - | 0 | 0 | | 0 | | | 5 | 0
39 | | 0 | | | 0 | 0
0 | 9 | | | 0 | | | | | 0 | | 0
0 | | | 6 | 30
0 | | 0 | | | 0 | 0 | 0 | | | 0 | | | | | 0 | | 0 | | | 8 | 0 | | 0 | | | 23 | 0 | 0 | | | 0 | | | | 0 | 0 | | 0 | | | 9
10 | 19
17 | | 0 | | - | 0 | 0 | 0 | | | 0 | | | | 0 | 0 | | 0 | | | 11 | 37 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | C | 0 | 0 |) (|) 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12
13 | 29
25 | | 0 | | | 0 | 0 | 0 | | - | 0 | | | | 0 | 0 | | 0 | | | 14 | 34 | 0 | 0 | 12 | . 0 | 0 | 0 | 0 | C | 0 | 0 | Ò | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 15
16 | 24
24 | | 0 | | | 0 | 0 | 0 | | | 0 | | | | | 0 | | 0 | | | 17 | 11 | 19 | 0 | 1 | 2 | 0 | 0 | 0 | C | 0 | 0 |) (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 18
19 | 0 | | 0 | | | 0 | 0
287 | 0
14 | | - | 0 | _ | | | 0 | 0 | - | 0 | | | 20
21 | 0 | | 0 | | | 0
23 | 0 | | | | 0 | | | | | 0 | | 0 | | | 22 | 42 | | 0 | | | 0 | 0
0 | 0 | | | 0 | | | | | 0 | | 0
0 | | | 23
24 | 0
17 | | 0 | | | 0 | 0 | 0 | | | 0 | | | | 0 | 0 | | 0 | | | 25 | 21 | | 0 | | | 0 | 0 | 0 | | | 0 | | | | | 0 | | 0 | 0 | | 26
27 | 23
0 | | 0 | | | 0 | 0 | | | | 0 | | | | 0 | 0 | | 0 | | | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 231 | 0 | Ċ | 0 | 0 | Ò | 0 | 0 | 0 | 0 | 400 | 3700 | 0 | | 29
30 | 0 | | 0 | | | 0
30 | 0 | | | | 0 | | | | 0 | 0 | | 0 | | | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | C | | 0 |) (|) 0 | | | 0 | 0 | 0 | 0 | | 32
33 | 0
4 | | 0 | | | 60
28 | 0 | 12
0 | | | 0 | | | | 0 | 0 | | 0 | | | 34 | 3 | | 0 | | | 21 | 0 | | | | 0 | | | | | | | 0 | | | 35
36 | 11
8 | | 0 | | | | 0 | | | | 0 | | | | | 0 | | 0 | | | 37
38 | 0
18 | | 0 | | | 72
0 | 0 | 36
0 | | | 0 | | | | 2 | | | 0 | | | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | Ò | 0 | 0 | 0 | 0 | 0 | 0 | 150 | | 40
41 | 0 | | 0 | | | 0 | 0 | 0 | | | 0 | | | | | 0 | | 0 | | | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 110 | C | 0 | 0 |) (| 0 | 0 | 0 | 0 | 400 | 7400 | 0 | | 43
44 | 0 | | 0 | | | 0 | 0 | 0 | | | 0 | | | | 0 | 0 | | 0 | | | 45 | 7 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | C | 0 | 0 |) (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 46
47 | | | 0 | | | 0 | 0 | | | | 0 | | | | | | | 0 | | | 48 | 47 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | C | 0 | 0 | Ò | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49
50 | 33
0 | | 0 | | | 0 | 0 | | | | 0 | | | | | | | | | | 51
52 | 0 | | 0 | | | 0 | 0 | | | | 0 | | | | | | | | | | 53 | 0 | 0 | 0 | 0 | | 57 | 0 | | | | 0 | | | | | | | 0 | 0 | | 54
55 | | | 0 | | | | 0 | | | | 0 | | | | | | | | | | 56 | 0 | 11 | 0 | 3 | 0 | 0 | 0 | 18 | C | 0 | 0 |) (|) 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 57
58 | | 33
63 | 0 | | | 0 | 0 | | | | 0 | | | | | | | | | | 59 | 7 | 88 | 0 | 9 | 20 | 0 | 0 | 0 | C | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 60 | | 64 | 0 | 8 | 39 | 0 | 0 | 0 | C | 0 | 0 | (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | Existing La | and Uses | | | | | | | | | | |------------|------------|------|--------|------------|-----------------|------------|------------|--------------|-----------------|--------------|----------|----------|---------|------------|--------|-------------|------------------|----------|--------------| | | 1 | 3 | 4 | 5 | 7 | 10 | 11 | 13 | 21 | 23 | 31 | 32 | 33 | 34 | 36 | 37 | 39
Downhill | 40 | 41
Cross- | | | SF | MF | Mobile | | | Lodging | Resort | Retail/ | Light | Public | Public | High | | | Post | | Skiing | Downhill | Country | | TAZ
61 | Resident 0 | | Home | SF Visitor | MF Visitor
0 | Hotel
0 | Hotel
0 | Commercial 0 | Industrial
0 | Utility
0 | School 0 | School 0 | College | Hospital (| Office | Church
0 | Employees
0 0 | | Skiers | | 62 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | | 0 | 0 | (|) (|) (| 0 (| 0 0 | 0 | | | 63
64 | 0 | | 0 | | 0 | 0 | 0 | | | 0 | - | 0 | (| | | - | 0 C
0 C | - | 0 | | 65 | 0 | 0 | C | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 (| 0 0 | 0 | 0 | | 66
67 | 17
8 | | 0 | | 3
11 | 36
0 | 0 | | | | | 0 | |) (| | | 0 C | | | | 68 | 15 | | 0 | | 4
7 | 59
0 | 0 | | 0 | 0 | - | 0 | (| | | - | 0 C | | 0 | | 69
70 | 8
13 | 35 | 0 | | 9 | 0 | 0 | 11 | 0 | | | 0 | |) (
) (| | - | 0 C | | | | 71
72 | 4
16 | | 0 | | 29
0 | 0 | 0 | | | | | 0 | |) (| | | 0 C | | | | 73 | 5 | 86 | Ö | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 | 0 0 | 0 | 0 | | 74
75 | 0
17 | | 0 | | 0 | 14
0 | 0 | | | 0 | - | 0 | | | | • | 0 C
0 C | | - | | 76 | 0 | 182 | C |) 1 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 (| 0 0 |) 0 | 0 | | 77
78 | 0 | | 0 | | 33
53 | 0 | 0 | | | 0 | - | 0 | (| | | | 0 | | 0 | | 79
80 | 0 | 0 | 0 | | 11
40 | 0 | 0 | | | 0 | - | 0 | | | | • | 0 C | | | | 81 | 0 | | 0 | | 44 | 156 | 0 | | | | | 0 | |) (| | • | 0 0 | | | | 82
83 | 0 | | 0 | | 66
0 | 0
71 | 0 | | | | - | 0 | - | | | - | 0 0
0 0 | | 0 | | 84 | 0 | 0 | Ö | 0 | 64 | 0 | 0 | 102 | 42 | 0 | 0 | 0 | (|) (|) (| 0 (| 0 0 | 0 | | | 85
86 | 0 | | 0 | • | 30
21 | 0 | 0 | | | | | 0 | |) (| | | 0 C
2 C | | | | 87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 : | 3 0 | 0 | | | 88
89 | 0 | | 0 | 0 0 | 0 | 0 | 0 | | | 0 | ū | 0
314 | - | | | | 0 C | | 0 | | 90
91 | 0 | | 0 | | 0 | 0 | 0 | | | 0 | | 0 | |) (| | | 0 C | | | | 92 | 0 | | 0 | | 0 | 0 | 0 | | | | | 0 | | | | - | 0 0 | | | | 93
94 | 82
0 | | 0 | | 0 | 0 | 0 | | | | | 0 | - | | | - | 0 C | | 0 | | 95 | 38 | 3 73 | C |) 23 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 (| 0 0 | 0 | 0 | | 96
97 | 1
22 | | 0 | | 48
10 | 1 | 0 | | | | | 0 | |) (| | | 0 C
0 C | | | | 98 | 31 | 0 | 0 | 7 | 0 | 0 | 0 | | | 0 | ū | 0 | (| | | | 0 C | | 0 | | 99
100 | 33
19 | | 0 | | 0
0 | 0
0 | 0 | | | 0 | | 0 | | | | - | 0 0
0 0 | | | | 101
102 | 0 | | 0 | - | 6
28 | 0 | 0 | | | 0 | - | 0 | | | | - | 0 C | | | | 103 | 0 | 0 | Q | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 | 0 0 | 0 | 0 | | 104
105 | 0 | | 0 | | 18
0 | 0 | 0 | | | 0 | - | 0 | |) (
) (| | • | 0 C
0 C | | 0 | | 106 | 30 | 0 | C |) 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 (| 0 0 |) 0 | 0 | | 107
108 | 33
0 | | 0 | | 0
27 | 0
0 | 0 | | | | | 0 | |) C | | | 0 C | | · | | 109 | 0 | 21 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | | | 0 | |) (| | | 0 0 | | 0 | | 110
111 | 3 | 3 0 | 0 | | 0 | 0 | 0 | | | | | 0 | |) <u>C</u> | | | 0 C | | | | 112
113 | 2 | | 38 | | 0
36 | 0 | 0 | | | | | 0 | |) (| | | 0 0
0 0 | | | | 114 | 0 | 110 | 41 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 (| 0 0 | 0 | 0 | | 115
116 | 0 | | 0 | | 25
16 | 0 | 0 | | | | | 0 | |) (| | | 0 C | | | | 117 | 0 | 57 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) (|) (| 0 | 0 0 | 0 | 0 | | 118
119 | 0 | | 0 | | 0 | 0 | 0 | | | | | 0 | |) (| | | 0 C | | | | 120 | | | C | | 15 | 0 | 0 | | | | | 0 | |) (| | | 0 0 | | | | | | | | | | | | | Existing La | ınd Uses | | | | | | | | | | |------------|----------|----------|---------|------------|------------|---------------|--------|------------|-------------|----------|--------|--------|---------|----------|--------|--------|----------------|----------|--------------| | | 1 | 3 | 4 | 5 | 7 | 10 | 11 | 13 | 21 | 23 | 31 | 32 | 33 | 34 | 36 | 37 | 39
Downhill | 40 | 41
Cross- | | | SF | MF | Mobile | | | Lodging | Resort | Retail/ | Light | Public | Public | High | | | Post | | Skiing | Downhill | Country | | TAZ | Resident | Resident | Home | SF Visitor | MF Visitor | Hotel | Hotel | Commercial | Industrial | Utility | School | School | College | Hospital | Office | Church | Employees | Skiers | Skiers | | 121 | 0 | 0 | 0 | 0 | 8 | 24 | 0 | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | 0 | | 122 | 0 | | 0 | | | 0 | 0 | | | | 0 | 0 | - | | 0 | | | | - | | 123 | 0 | | 0 | | 0 | 0 | 0 | 4 | 6 | | 0 | 0 | 0 | 0 | 0 | | - | | - | | 124
125 | 0 | | 0 | | 0 | 0 | 0 | | | | 0 | 0 | | 0 | 0 | | | | | | 125 | 0 | | 0 | | | 0 | 0 | | | | 0 | 0 | | | 0 | 3 | | | | | 127 | 0 | | 0 | | | 0 | 0 | | 0 | | 0 | 0 | | | 0 | | | | | | 128 | 4 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | 0 | | 129 | 0 | | 0 | | | 0 | 179 | | | 0 | 0 | 0 | - | | 0 | | - | | | | 130 | 0 | | 0 | | | 0 | 0 | | | | 0 | 0 | | | 0 | | | | | | 131
132 | 0 | | 0 | | | 0 | 0 | | | 0 | 0 | 0 | | | 0 | C | | | | | 133 | 20 | | 0 | | | 0 | 0 | 0 | | | 0 | 0 | - | | 0 | | - | | | | 134 | 20 | | 0 | | | 0 |
0 | 0 | | 0 | 0 | 0 | | | 0 | Č | | | | | 135 | 10 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | 0 | | 136 | 1 | | 0 | | | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 | C | | | | | 137 | 26 | | 0 | | | 0 | 0 | 0 | | 0 | 0 | 0 | - | 0 | 0 | C | - | | | | 138
139 | 0 | | 0 | | | 0 | 0 | 0 | | 0 | 0 | 0 | - | | 0 | | - | | | | 140 | 0 | | 0 | | | 0 | 0 | | | 12 | 0 | 0 | | | 0 | 0 | | | | | 141 | 0 | | 0 | | | 0 | 0 | | | | 0 | 0 | | | 0 | | | | | | 142 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | | | | 143 | 22 | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | - | | | | 144 | 11 | | 0 | | | 0 | 0 | 0 | | 0 | 0 | 0 | Ū | | 0 | | • | | | | 145
146 | 5
23 | | 0 | | | <u>0</u>
5 | 0 | | | | 0 | 0 | | | 0 | C | | | | | 147 | 18 | | 0 | | 1 | 0 | 0 | 0 | | | 0 | 0 | | - | 0 | | | | | | 148 | 34 | | 0 | | | 0 | 0 | 0 | | | 0 | 0 | | | 0 | | | | | | 149 | 0 | | 0 | | | 0 | 0 | | | 0 | 0 | 0 | - | - | 0 | | - | | | | 150 | 0 | | 0 | | | 0 | 0 | | | | 0 | 0 | | | 0 | C | | | | | 151
152 | 0 | | 0 | | | 0 | 0 | | 0 | | 0 | 0 | - | | 0 | | | | | | 152 | 0 | | 0 | | | 0 | 45 | | 0 | | 0 | 0 | - | - | 0 | | | | | | 154 | 25 | | 0 | | | 0 | 0 | | | | 0 | 0 | - | | 0 | | - | | | | 155 | 20 | | 0 | | | 5 | 0 | | | | 0 | 0 | | | 0 | C | | | | | 156 | 37 | | 0 | | | 8 | 0 | 0 | | 0 | 0 | 0 | - | | 0 | C | - | | | | 157 | 42 | | 0 | | 2 | 0 | 0 | 0 | | 0 | 0 | 0 | - | - | 0 | C | - | - | | | 158
159 | 6 | | 53
0 | | | 10
0 | 0 | 0 | | | 0 | 0 | - | 0 | 0 | | | | | | 160 | 0 | | 0 | | | 0 | 0 | | | 0 | 0 | 0 | | - | 0 | C | - | | | | 161 | 0 | | 0 | | | 0 | 0 | | | | 0 | 0 | | | 0 | C | | | | | 162 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | 0 | | 163 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | • | 0 | | | 164 | 6 | | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | - | 0 | 0 | C | - | - | - | | 165
166 | 0 | | 0 | | | 0 | 0 | 0 | | 0 | 0 | 0 | - | 0 | 0 | | - | | - | | 167 | 0 | | 0 | | | 0 | 0 | | | | 0 | 0 | - | - | 0 | | | | | | Totals | 1454 | | 132 | | 2426 | 997 | 976 | | | | 832 | 314 | | | 7402 | | | | | | | | | | | | | | F | uture Lan | d Uses | | | | | | | | | | |----------|----------------|----------------|----------------|------------|------------|------------------|-----------------|-----------------------|---------------------|-------------------|------------------|----------------|---------|----------|----------------|--------|---------------------|--------------------|-------------------| | | 1 | 3 | 4 | 5 | 7 | 10 | 11 | 13 | 21 | 23 | 31 | 32 | 33 | 34 | 36 | 37 | 39
Downhill | 40 | 41
Cross- | | | SF
Resident | MF
Resident | Mobile
Home | SF Visitor | MF Visitor | Lodging
Hotel | Resort
Hotel | Retail/
Commercial | Light
Industrial | Public
Utility | Public
School | High
School | College | Hospital | Post
Office | Church | Skiing
Employees | Downhill
Skiers | Country
Skiers | | 1 | 0 | 0 | C | 0 | 0 | 0 | 234 | 154 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 1300 | 10400 | 0 | | 3 | 78
73 | 0 | C | 16 | 0 | 0 | 0 | 0 | | 0 | 0 | C | 0 | 0 | (|) (| 0 0 | 0 | | | 4
5 | 0
49 | | | | 0 | 0 | | | 0 | | 0 | - | | | | | 0 0 | | | | 6 | 36 | 0 | C |) 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 0 | 0 | 0 | | 8 | 0 | 16 | C | 0 | 26
0 | 123 | 0 | 7 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 0 | 0 | 0 | | 9
10 | | | | | 0 | 0 | | | | | 0 | | | | | | 0 0 | | | | 11
12 | | | | | 0 | 0 | | | | | 0 | | | | | | 0 0 | 0 | 0 | | 13 | 40 | 0 | C | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 | 0 | | | 14
15 | | | | | 0 | 0 | | | 0 | | 0 | | | | |) (| 0 0 | | | | 16
17 | 31 | 0 | | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0 0 | 0 | C | | 18 | 0 | 44 | C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | (|) (| 0 0 | 0 | 0 | | 19
20 | | | | | 0
2 | 0 | | | 0 | | 0 | | | | | | 0 0 | | | | 21
22 | | | | | 101
0 | 23
0 | 0 | | | | 0 | | | | | | 0 0 | | | | 23 | 0 | 81 | C | 0 | 127 | 0 | 0 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 0 | 0 | 0 | | 24
25 | | | | | 3 | 0 | | | | | 0 | | | | | | 0 0 | | | | 26
27 | | | | | 0
63 | 0
2 | | | | | 0 | | | | |) (| 0 0 | | | | 28 | 0 | 0 | C | 0 | 0 | 0 | 231 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 400 | 6400 | 0 | | 29
30 | 0 | 0 | C | 0 | 22
31 | 0
83 | 0 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 0 | 0 | 0 | | 31
32 | | | | | 0
54 | 0
60 | | | | | 0 | | | | | | 0 0 | | | | 33
34 | 4 | 21 | C | 3 | 38 | 68
226 | 0 | 12 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 0 | 0 | C | | 35 | 13 | 104 | C | 8 | 3 | 121 | 0 | 45 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 0 | 0 | C | | 36
37 | | | | | 0
14 | 152
99 | 0 | | 0 | | 0 | | | | 7400 | | 0 0 | | | | 38
39 | | | C | 0 | 0 | 0 | 0 | 0 | | | 0 | | | | | | 0 0 | 0 | C | | 40 | 0 | 0 | C | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 | 0 | C | | 41
42 | - | | | | 0 | 0 | | | | | 0 | | | | | | 0 400 | | | | 43
44 | | | C | | 59
70 | 13
0 | | | 0 | | 0 | - | | | | | 0 0 | | | | 45 | 9 | 0 | C |) 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 | 0 | C | | 46
47 | 36 | 0 | C | 12 | 0
0 | 0
0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | (|) (| 0 0 | 0 | C | | 48
49 | | | | | 0 | 0 | | | | | 0 | | | | | | 0 0 | | | | 50 | 0 | 86 | C | 0 | 115 | 0 | 0 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 | 0 | | | 51
52 | 0 | 0 | C | 0 | 18
0 | 0 | 364 | . 19 | 0 | 0 | 0 | C | 0 | 0 | (|) (| 0 0 | 0 | | | 53
54 | | | | | 0 | 57
59 | 180
0 | | 0 | | 0 | | | | | | 0 0 | | | | 55 | 0 | 50 | C | 0 | 50 | 20 | 0 | 0 | 0 | 0 | 0 | C |) 0 | 0 | (|) (| 0 0 | 0 | (| | 56
57 | 3 | 38 | C | 3 | 0
32 | 82
3 | 0 | 0 | | 0 | 0 | C | 0 | 0 | (|) (| 0 0 | 0 | C | | 58
59 | | | | | 57
21 | 0 2 | | | | | 0 | | | | | | 0 0 | | | | 60 | | | | | 39 | 0 | | | | | 0 | | | | | | 0 | 0 | Č | | | | | | | | | | F | uture Lan | d Uses | | | | | | | | | | |------------|----------------|----------------|----------------|------------|------------|------------------|-----------------|-----------------------|---------------------|-------------------|------------------|----------------|---------|----------|----------------|--------|---------------------|--------------------|-----------------------------| | | 1 | 3 | 4 | 5 | 7 | 10 | 11 | 13 | 21 | 23 | 31 | 32 | 33 | 34 | 36 | 37 | 39
Downhill | 40 | 41
Cross | | | SF
Resident | MF
Resident | Mobile
Home | SF Visitor | MF Visitor | Lodging
Hotel | Resort
Hotel | Retail/
Commercial | Light
Industrial | Public
Utility | Public
School | High
School | College | Hospital | Post
Office | Church | Skiing
Employees | Downhill
Skiers | Cross-
Country
Skiers | | 61 | 0 | | C | | | 188 | (| | 0 | | 0 | |) (| | | |) 0 | 0 | | | 62
63 | | | C | | | 51
0 | (| | 0 | 0 | 0 | C | | | | 0 (| 0 0 | | - | | 64 | 0 | 0 | C | 0 | 60 | 0 | (| 0 0 | 0 | | 0 | C |) (| 0 | | 0 (| 0 | 0 | 0 | | 65
66 | | | C | | | 0
45 | (| | 0 | 0 | 0 | C | | | | | 0 0 | | | | 67 | | | C | | | 0 | (| | 0 | | 0 | | | | | |) 0 | | | | 68
69 | | | C | | | 75
0 | (| | 0 | | 0 | | | | | | 0 0 | | | | 70 | | | C | | | 19 | (| | 0 | - | 0 | C | - | - | | - |) 0 | | | | 71 | | | C | | | 0 | (| | 0 | | 0 | | | | | |) 0 | | | | 72
73 | | | C | | | 2 | (| | 0 | | 0 | | | | | | 0 0 | | | | 74 | 0 | 10 | C | | 0 | 38 | (| | 0 | | 0 | | | | | |) 0 | | - | | 75
76 | | | C | | 11
71 | 0 | (| | 0 | | 0 | | | | | | 0 0 | | | | 77 | 0 | 119 | C | 0 | 33 | 0 | (| 0 0 | 0 | 0 | 0 | C |) (| 0 | | 0 (| 0 | 0 | 0 | | 78
79 | | | C | | | 0
29 | (| | 0 | | 0 | | | | | | 3 0 | | | | 80 | 0 | 108 | C | 0 | 45 | 23 | (| 21 | 0 | 0 | 0 | C |) (| 0 | | 0 (|) 0 | 0 | 0 | | 81
82 | 0 | | C | | | 487
0 | (| | 0 | | 0 | | | | | | 0 0 | | | | 83 | | 4 | C | | | 99 | (| | 0 | | 0 | | | | | |) 0 | | | | 84
85 | | | C | | | 24 | (| | 0 | | 0 | | | | | | 0 0 | | | | 86 | | | | | 21 | 26
30 | (| | 0 | | 0 | | | | | | 2 0 | | | | 87 | | | C | | | 0 | (| | 0 | | 0 | | | | | | 3 0 | | - | | 88
89 | | | C | | | 0 | (| | 0 | | 0 | | | | | | 0 0 | | | | 90 | 0 | 0 | C | 0 | 0 | 0 | (| 0 | 0 | 0 | 0 | C |) (| 0 | | 0 (|) 0 | 0 | 0 | | 91
92 | | | C | | | 0 | (| | 0 | | 264
568 | | | | | | 0 0 | | | | 93 | 91 | 0 | C | 8 | 0 | 0 | (| 0 0 | 0 | 0 | 0 | C |) (| 0 | | 0 (|) 0 | 0 | 0 | | 94
95 | | | C | | | 0
12 | (| | 422
0 | | 0 | | | | | | 0 0 | | | | 96 | 1 | 104 | C |) 9 | 59 | 10 | (| 0 | 0 | 0 | 0 | C |) (| 0 | | 0 (|) 0 | 0 | | | 97
98 | | | C | | | 0 | (| | 0 | | 0 | | | | | 0 (| 0 0 | | - | | 99 | 38 | 0 | C | 10 | 0 | 0 | (| 0 0 | 0 | | 0 | C |) (| 0 | | 0 (|) 0 | 0 | 0 | | 100
101 | | | C | | | 0 | (| | 0 | | 0 | | | | | | 0 0 | | | | 101 | | | C | | | 0 | (| | 0 | | 0 | | | | | |) 0 | | | | 103 | | | C | | | 0 | 500
(| | 0 | | 0 | C | | | | 0 (| | | - | | 104
105 | 0 | 0 | C | | | 0
0 | (| | 0 | - | 0 | C | - | - | | | 0 0 | | | | 106 | 33 | | C | | | 0 | (| | 0 | | 0 | | | | | |) 0 | | | | 107
108 | | | C | | | 0 | (| | 0 | | 0 | | | | | 0 (| 0 0 | | | | 109 | 0 | 47 | C | 0 | 24 | 0 | (| 0 | 0 | 0 | 0 | C |) (| 0 | | 0 (| 0 | 0 | 0 | | 110
111 | 0
29 | | C | | | 0
17 | (| | 0 | | 0 | | | | | • | 0 0 | | | | 112 | 36 | 12 | C | 15 | 0 | 0 | (| 0 0 | 0 | 0 | 0 | C |) (| 0 | | 0 (| 0 | 0 | 0 | | 113
114 | | | 38
41 | | | 0 | (| | 0 | | 0 | | | | | | 0 0 | | | | 115 | 0 | 32 | C | 0 | 25 | 0 | (| 0 | 0 | 0 | 0 | C |) (| 0 | | 0 (|) 0 | 0 | 0 | | 116
117 | | | C | | | 0 | (| | 0 | | 0 | | | | | | 0 0 | | - | | 117 | | | C | | | 30 | (| | 0 | 0 | 0 | C | | | | |) 0 | | | | 119 | | | C | 0 | 0 | 33 | (| | 0 | | 0 | | | | | |) 0 | 0 | 0 | | 120 | 0 | 45 | C | 0 | 15 | 0 | (| 0 | 0 | 0 | 0 | C |) C | 0 | | 0 (|) 0 | 0 | 0 | | | | | | | | | | F | uture Land
| Uses | | | | | | | | | | |------------------|----------------|----------------|----------------|------------|------------|------------------|-----------------|-----------------------|---------------------|-------------------|------------------|----------------|---------|----------|----------------|--------|---------------------|--------------------|-------------------| | | 1 | 3 | 4 | 5 | 7 | 10 | 11 | 13 | 21 | 23 | 31 | 32 | 33 | 34 | 36 | 37 | 39
Downhill | 40 | 41
Cross- | | | SF
Resident | MF
Resident | Mobile
Home | SF Visitor | MF Visitor | Lodging
Hotel | Resort
Hotel | Retail/
Commercial | Light
Industrial | Public
Utility | Public
School | High
School | College | Hospital | Post
Office | Church | Skiing
Employees | Downhill
Skiers | Country
Skiers | | 121 | 0 | 0 | 0 | 0 | 8 | 42 | 0 | 59 | 0 | 0 | 0 | 0 | | 0 | 0 | | | | | | 122 | 0 | 69 | 0 | 0 | 16 | 24 | 0 | | 0 | 1 | 0 | 0 | | | 0 | | | 0 | - | | 123
124 | 0 | 0
49 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | - | | 0 | | , , | 0 | - | | 125 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | - | - | 0 | | | 0 | - | | 126 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 35 | 0 | 0 | 0 | 0 | 0 | (| | | 0 | | 127 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | - | | 0 | | | | - | | 128
129 | 44
0 | 0
11 | 0 | 24
0 | 0
102 | 0 | 0
179 | | 0 | 0 | 0 | 0 | - | - | 0 | - | , , | 0 | - | | 130 | 0 | 0 | 0 | 0 | 0 | 0 | 106 | | 0 | 0 | 0 | 0 | | | 0 | | , , | 5350 | - | | 131 | 0 | 79 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) 0 | 0 | | | 132 | 0 | 89 | 0 | 0 | 121 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | | - | | 133
134 | 32
20 | 82
56 | 0 | 23
16 | 0
10 | 0 | 0 | | 0 | 0 | 0 | 0 | Ū | | 0 | (| , , | 0 | - | | 135 | 19 | 0 | 0 | 9 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | | - | | 136 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | (| 0 | 0 | 0 | | 137 | 41 | 0 | 0 | 16 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | 0 | - | | 138
139 | 0 | 185
211 | 0 | 0 | 111
180 | 0
37 | 0 | | 0 | 0 | 0 | 0 | - | 0 | 0 | (| | 0 | - | | 140 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 12 | 0 | 0 | | 0 | 0 | | | 0 | | | 141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (| | 0 | - | | 142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | | | | 143
144 | 23
11 | 0 | 0 | 12
10 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | 0 | | | 145 | 7 | 1 | 0 | 6 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | | | | 146 | 30 | 29 | 0 | 13 | 0 | 5 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | 0 | 0 | | 147 | 20 | 13 | 0 | 11 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | | | | 148
149 | 37
0 | 0
61 | 0 | 9 | 0
42 | 0 | 0 | | 0 | 0 | 0 | 0 | - | 0 | 0 | (| | 0 | - | | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | (| | 0 | | | 151 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (| 0 | | | | 152 | 0 | 87 | 0 | 0 | 94 | 0 | 0 | | 0 | 1 | 0 | 0 | - | 0 | 0 | (| | 0 | | | 153
154 | 0
75 | 0 | 0 | 0
15 | 0 | 0 | 45
0 | | 0 | 0 | 0 | 0 | | 0 | 0 | (| , , | 0 | | | 155 | 26 | 3 | 0 | 17 | 0 | 5 | 0 | | 0 | 0 | 0 | 0 | - | • | 0 | - | | 0 | | | 156 | 52 | 25 | 0 | 11 | 1 | 10 | 0 | | 0 | 0 | 0 | 0 | | | 0 | | | | | | 157 | 48 | 65 | 0 | 11 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | (| , , | 0 | - | | 158
159 | 9 | 28
144 | 53
0 | 6
0 | 0 | 13
0 | 0 | | 0 | 0 | 0 | 0 | - | 0 | 0 | (| | 0 | - | | 160 | 0 | 197 | 0 | 0 | 198 | 0 | 200 | | 0 | 0 | 0 | 0 | | | 0 | (| | 0 | - | | 161 | 0 | 197 | 0 | 0 | 198 | 0 | 200 | | 0 | 0 | 0 | 0 | | | 0 | | | 0 | • | | 162 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | - | 0 | 0 | (| | 0 | - | | 163
164 | 0 | 0 | 0 | 0
30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | 0 | (| , , | 0 | Ü | | 165 | 12
0 | 256 | 0 | 0 | 79 | 0 | 0 | | 0 | 0 | 0 | 0 | Ū | 0 | 0 | (| , , | 0 | - | | 166 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | • | 0 | • | , , | - | - | | 167 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (| 0 | | | | Total | 1925 | 5416 | 132 | 700 | 3563 | 2574 | 3529 | 1828 | 422 | 49 | 832 | 314 | . 0 | 33 | 7400 | 14 | 1 2163 | 28350 | 350 | | Existing | 1454 | 4023 | 132 | 627 | 2426 | 997 | 976 | | 311 | 49 | 832 | 314 | | | 7402 | | | | | | Total - Existing | 471 | 1393 | 0 | 73 | 1137 | 1577 | 2553 | 523 | 111 | 0 | 0 | 0 | 0 | 12 | -2 | (| 0 | 3400 | 0 | | % Increase | 32% | 35% | 0% | 12% | 47% | 158% | 262% | 40% | 36% | -1% | 0% | 0% | 0% | 57% | 0% | 0% | 5 0% | 14% | 0% | ### Appendix C: Mammoth Lakes Travel Demand Model User's Guide ## Mammoth Lakes Travel Demand Model User Guide #### 1. Model Inputs The model relies on the following input files: #### Roadway Network.dbd This is the geographic roadway network file containing all roadway links and nodes. It is based on a GIS file with some additional fields that are required by TransCAD. These include: AB_Lanes/BA_Lanes number of lanes in each direction Capacity_HR hourly total capacity of roadway used in the peak hour model Capacity_ADT daily total capacity used in the daily model 85th_Speed 85th percentile speed used to determine vehicle travel time AB_VehicleTT/BA_VehicleTT vehicle travel times in each direction, determined by dividing length by 85th percentile speed BusTT transit travel time, determined by dividing length by bus speed (assumed to be 12 mph) WalkTT walk travel time, determined by dividing length by 4 feet/second LinkType functional classification of roadway • 0 - Centroid Connector • 1 - State Route • 2 - Arterial • 3 - Collector 4 - Local • 5 - County Road • 6 - Other • 7 - Private • 8 - Alley • 9 - USFS Route The roadway network file also contains count data for existing counts in the 2009_ADT and 2009_PeakHour fields. These fields were used in the calibration process. #### Traffic Analysis Zones.dbd This is the geographic representation of the Traffic Analysis Zones (TAZ) used by the model. The model uses the size of each TAZ to determine intrazonal travel times. #### Transit System.rts The transit system information, including routes and stops, are stored in this file. The routes are displayed on the underlying roadway network. Transit specific information is stored inside fields in this file. These include: Headways between buses Transfer_Penalty the transfer penalty for each route, typically half of the headway The total base ridership for each route is also stored in this file to assist during the calibration step. #### land_use_data.dbf This is the data file that contains the land use quantities by TAZ. The first row contains the TAZ numbers while the remaining rows contain the quantities by each land use type. Any land use changes need to be reflected in this file. #### trip_rates.dbf The trip rates used by the model for each land use type are stored in this file. Both attraction and production rates for each of the five trip purposes are listed (home based recreation, home based shopping, home based work, home based other, and other to other). #### Base_VehicleTT.bin This are the base vehicle travel times for each roadway link calculated by dividing link length by 85th percentile speeds. These values are used to reset model adjustments and ensure that the each model runs begins with a set of base vehicle travel times. Various travel time penalties are then added throughout the model steps. #### ski_area_penalty.bin This file contains the vehicle travel time penalties for the ski areas. These values are added to the base vehicle travel times to artificially inflate them and therefore increase the transit share. The values were calculated to obtain a transit share for each ski area that matched the transit share from the Town's travel survey. #### external_gates.bin The attractions and productions for the three external gates are included in this file. These values are based on actual traffic counts at the external gates and need to be adjusted for future scenarios. They are incorporated with the TAZ attractions and productions in the trip distribution step. #### adjusted_friction_factors.bin These are the friction factors that are used by the model in the gravity model to determine trip distribution. Factors for each of the five trip types are provided. These are based on the factors used in the prior model with some adjustments to provide better trip distribution results. #### K-Factors.mtx This matrix stores the K-factors that are used in the gravity model. Most TAZ pairs have a K-factor of 1.00 meaning that no adjustment is made. However, the K-factor was adjusted for some pairs in order to make trips between these zone more/less attractive. Specifically, this was used to adjust ski area distribution and the distribution in the Mammoth Slopes neighborhood to get the desired results. #### ADT_TT_adjustments.bin Adjustments to vehicle travel time in order to calibrate the daily model are stored in this file. These travel time are added to the base vehicle travel times to modify the demand on particular roadway links. #### PH_TT_adjustments.bin Adjustments to vehicle travel time in order to calibrate the peak hour model are stored in this file. These travel time are added to the base vehicle travel times to modify the demand on particular roadway links. #### turning_movement_table.bin Intersection data used in the peak hour assignment is stored in this file. This information is used to determine delays at signalized intersections during the assignment process. #### 2. Running the Model To run the model, the resource file that contains all the instructions needs to be compiled within TransCAD. To do this, go to "Tools" and "GIS Developer's Kit" to open the GISDK Toolbox. In the toolbox, the third icon allows you to "Compile to UI". Select this option to compile the resource file to a UI file. Navigate to the correct resource file and open it. TransCAD will then ask for the location of the UI file. Navigate to the model folder and save it there. To add
the UI file to the Tools menu, go to "Tools" and "Setup Add-ins..." A dialog box will open allowing you to add the model to the Tools menu. Select "Add" and complete the required fields: Type type of menu, select "Dialog Box" Description a short name for the model to be listed in the Tools menu (ie. base model or future model) Name name of the model from the resource file, this must be list as "Mammoth Lakes Model" UI Database location of the compiled UI file, navigate to the UI file that was compiled earlier In Folder the folder you wish to place the model into within the Tools menu, generally left as "None" Once the model has been set up, close the dialog box by clicking "OK". The model should now be listed under the Tools menu under "Add-Ins". Navigate to it and select the correct model to run the model dialog box. This will open the model dialog box which is used to run the model steps. A total of seven individual model steps are listed. These include: - Trip Generation - Trip Distribution - Mode Split - Preliminary Assignment - Feedback Loop - Final Daily Assignment - Peak Hour Assignment To run the model, click on each model step in succession and wait a few seconds for the operations to complete. The correct order is as follows: - Trip Generation - Trip Distribution - Model Split - Preliminary Assignment - Feedback Loop - Preliminary Assignment - Feedback Loop - Final Daily Assignment The feedback loop and preliminary assignment are each run twice before the final assignment. These steps calculate congested travel times and feed them back into the gravity model. This ensures that the gravity model accounts for congestion. Based on convergence tests, it takes two iterations for the gravity model to converge. This is why the preliminary assignment and feedback loop need to be run twice. Please also note that at the end of each feedback loop step, all open windows must be closed before the model can continue. This is due to the fact that the preliminary assignment cannot be completed unless all windows are closed. The model will provide a prompt to remind the user of this step. Once the gravity model converges, the final daily assignment and peak hour assignments can be executed. The Peak Hour Assignment step should be run independently after the daily model is executed. This is necessary due to the fact that both the peak hour and daily model assignments utilize some of the same files and require that these files be closed prior to the execution of each step. Close the model menu and all open windows, re-enter the model menu and run the Peak Hour Assignment step. Due to limitations of the TransCAD GISDK scripting language, the final step of the peak hour assignment cannot be scripted and has to be performed manually. In order to do this, close all open windows and open the following files: - Roadway Network.dbd - turning_movement_table.bin - PH Vehicle PA to OD.mtx Make sure that the Roadway Network.dbd file is selected and go to "Planning", "Single-Class Traffic Assignment", and "Volume Dependant Turning Delays". A dialog box will open requesting that you select the appropriate network file. Select "Network.net" in the model folder. The next box requires the correct network settings. Select "Centroids are in network" or "Create from Selection set", Link Type to "In Use", and Penalties to "None". The next dialog box will ask for the assignment method that you want to use. Select the following options: Method Stochastic User Equilibrium Matrix File PA to OD Matrix QuickSum Movement Table turning_movement_table Signal Plans navigate to the Signal Plans.tms file in the model folder Time AB_VehicleTT/BA_VehicleTT Capacity Capacity_HR Number of Lanes AB_Lanes/BA_Lanes Alpha None Beta None Control Type AB_Control/BA_Control Iterations20Relative Gap0.01Alpha0.15Beta4.00 Once you've selected the correct options, select "OK". TransCAD will then ask for the location of the output files. Navigate to the model folder and select "OK". The peak hour assignment will then be performed and a dialog box will open indicating whether the procedure was a success or if there were problems. #### 3. Model Outputs Once the model has been run, the following output files will be created: #### ASN_LinkFlow.bin This file contains the results of the daily assignment model. Various parameters are provided by direction. The traffic volumes are stored in rows two through four (AB_Flow, BA_Flow, and Tot_Flow.) The .bin file can be joined to the Roadway Network.dbd file to graphically display the results. Please review the TransCAD manual on how to join .bin files to geographic files. #### LinkFlow.bin This file contains the results of the peak hour assignment model. Various parameters are provided by direction. The traffic volumes are stored in rows two through four (AB_Flow, BA_Flow, and TOT_Flow.) The .bin file can be joined to the Roadway Network.dbd file to graphically display the results. Please review the TransCAD manual on how to join .bin files to geographic files. #### TASN_ONO.bin The daily transit on and off results by route are stored in this file. The results can be grouped by "ROUTE" to get the total ridership by each route. Go to "Dataview" and "Group By ..." to group the results. #### PH_TASN_ONO.bin The peak hour transit on and off results by route are stored in this file. The results can be grouped by "ROUTE" to get the total ridership by each route. Go to "Dataview" and "Group By ..." to group the results. #### 4. Modifying Model Inputs The model can be modified in various ways, including changing the land use, changing the external gate productions and attractions, modifying the roadway network, and adjusting the transit share. #### Land Use To change the land use, open the land_use_data.dbf file and adjust the quantities. The model will then need to be re-run and will reflect the new land use values. #### **External Gate Productions and Attractions** To modify the amount of productions and attractions that are generated by the external gates, open the external_gates.bin file and edit the values at the bottom of the table. The three external gates are 701, 702, and 703, so only values for these three zones should be adjusted. #### Roadway Network To adjust roadway laneage and capacities, open the Roadway Network.dbd file and adjust these values in the AB_Lanes/BA_Lanes and Capacity_HR/Capacity_ADT fields for the specific roadway links. To add new roadway connections, open the Roadway Network.dbd file and go to "Tools", "Map Editing", and "Toolbox". A toolbox to allow you to edit the roadway map will appear. You can then perform the editing functions, such as adding new roadway connections. For detail on how to perform edits on line features, please see Chapter 24 of the TransCAD User's Guide. Make sure that your connections are not between centroid connector nodes, by turning on the node layer (under "Map" and "Layers") and not utilizing nodes 1 through 167 as well as 701, 702, and 703. Once the new roadway links have been created, please note the ID of each link as this information will be used to edit various other input files. The appropriate values for each of the required roadway network fields listed in the Model Inputs section will need to be filled out for the new roadway links. All other fields can remain blank. Since various other inputs are associated with the roadway network file, they will need to be modified to add the new links that have been created. Base_VehicleTT.bin The base AB_VehicleTT/BA_VehicleTT values for all new links should be entered into this file. This will require that new fields be created and the correct ID and travel times entered for each new link. ski_area_penalty.bin This file will need to be modified to include the new roadway links. New fields for each new link should be created and the correct ID entered. The additional travel time penalty should be 0.00 for each direction. ADT_TT_Adjustments.bin This file will need to be modified to include the new roadway links. New fields for each new link should be created and the correct ID entered. The additional travel time adjustment should be 0.00 for each direction unless manual adjustments to the travel time are desired. PH_TT_Adjustments.bin This file will need to be modified to include the new roadway links. New fields for each new link should be created and the correct ID entered. The additional travel time adjustment should be 0.00 for each direction unless manual adjustments to the travel time are desired. Once all the required changes are made, the model can be re-run and will reflect the addition of the new roadway links. #### **Transit Share** The easiest method to modify the transit share is to adjust the transit travel time to vehicle travel time ratio. Since the transit share is inversely proportional to the ratio, increasing the ratio will lower the transit share while reducing the ratio will increase the transit share. There are two ways to adjust the travel time ratio, either increasing the vehicle travel time or decreasing the transit travel time. To increase vehicle travel time, higher base vehicle travel times can be computed by assuming lower roadway speeds. For example, they can be computed by dividing the length by 70 percent of the speed, therefore assuming that vehicle speeds are 30 percent lower than in the current model. The Roadway Network.dbd and Base_VehicleTT.bin files will need to be modified to include these higher vehicle travel times. To modify transit travel times, the BusTT field in the Roadway Network.dbd file will need to be adjusted. The base model assumes a transit speed of 12 mph. Lower transit travel times can be used by assuming a higher speed and re-calculating the travel times. Either of these two modifications will impact the transit travel time to vehicle travel time ratio and increase the transit share for each TAZ. The model will then need to be re-run to see the effects of this change.
To compute the overall transit share, a comparison of total transit trips to total trips will need to be made. The total trips found in the Transit PA to OD.mtx file should be divided by the total trips in the Trip Distribution.mtx file (to get the total trips, create a QuickSum matrix and go to "Matrix" and "Statistics" to get the sum of the QuickSum matrix). To get specific transit share percentages, a trial and error approach may need to be used to determine the exact changes to the vehicle or transit travel times that will be needed. #### 5. Moving the Model It is recommended that the whole model directory be copied for all additional model runs. In addition to copying the folder, several additional steps will need to be performed. TransCAD stores the path to the model files inside the resource file. As a result, the resource file will need to be edited to change all reference to the path to the new location. This can be done fairly easily within Notepad. Open the "mammoth_lakes_model_v1.12.rsc" file and do a replace find within the file. Please note that paths in TransCAD include a double slash instead of a single slash. For example: C:\Program Files\TransCAD\ = C:\Program Files\\TransCAD\\ Once the resource file has been updated with the new path information, it will need to be recompiled and a new model menu added under "Tools" and "Setup Add-ins...". To assist in keeping the different model runs organized, it is recommended that a new folder be created under the "Add-ins" menu to keep all the alternative model scenarios in one location. The other modification that has to be made is to the transit system file. This file stores the location of the underlying roadway network. Since the roadway network file has been moved, the transit route file has to be modified to point the file to the new location. To perform this, open the Roadway Network.dbd file in the new location and select "Route Systems", "Utilities", and "Move...". This opens the move dialog box. Select the Transit System.rts file in the new location and hit "OK" in the following dialog box to accept the default options. The Transit System.rts file will now utilize the correct underlying roadway network file. ## Traffic Model Alternatives 4 and 5 Buildout DNDP Land use with Complete Circulation Network #### Purpose: To test the traffic impacts on the "complete circulation network" related to potential increases to land use (residential and commercial) within the DNDP Study Area associated with increased available land due to ROW relinquishment, redevelopment of the existing USFS compound/campground, and redevelopment of the existing RV Park . Potential ROW relinquishment would produce approximately 175,000 (4 acres) additional buildable square feet on Main Street between Manzanita Road and Sierra Park Road. #### Methodology: Buildout "DNDP" Land use with Complete Circulation Network = Buildout "Baseline" Land use + DNDP Land use #### Where: - Complete Circulation Network = existing roadway network plus future roads as recommended in the DNDP/Mobility Plan - Buildout "Baseline" Land use = PAOT assumptions for Residential; Commercial approved projects + 0.25 FAR for vacant/redevelopment CG/CL land - DNDP Land use = potential additional rooms/units and commercial square footage due to ROW relinquishment, redevelopment of USFS/RV Park areas #### **ROW Relinquishment Assumptions:** - 2,850 lineal feet on South side of Main Street between Manzanita and Sierra Park Road - 1,500 lineal feet on North side of Main Street between Manzanita and Forest Trail - 40 feet additional ROW on south and north side of Main Street - Additional rooms at 80 RPA =320 - Additional commercial square footage depends on assumed FAR. Minimum 0.25 FAR = 30,000 sq. ft. of additional commercial #### USFS Compound and Campground Assumptions: - Location of future Civic Center, additional employee housing, and retail - o Retail 30,000 sq. ft. - o 18 existing USFS units. Increase to 100 - Civic Center insignificant impact on traffic model because of winter Saturday design day #### **RV Park Assumptions:** - Location of future Sports/Events park - Sports/Event Park insignificant impact on traffic model because of winter Saturday design day Morriss 1 | | Existing Land Use SF = 10 | Buildout Baseline Land Use SF = 10 | Buildout DNDP Land Use (Alts 4/5) \circ SF = 10 | |--------------------------------------|---------------------------|-------------------------------------|--| | MF = 0 | | | | | Lodging = 151 | 51
- 7400 | | o Lodging = 211 | | I USI CIIICC | | | | | MF = 14 | | \circ MF = 14 | \circ MF = 14 | | | 2 | Lodgi | | | | 36,000 | | O Ketail = 84,000 | | SF = 18 | | o SF = 18 | $\begin{array}{c} \circ \text{ SF} = 18 \\ \circ \text{ MF} = 32 \end{array}$ | | | | | o Retail = 15,000 | | | | | \circ Civic Center (Retail as proxy) = 2000 | | XC Skiers = 150 | 150 | o XC Skiers = 150 | | | | | | 0 MF = 50
0 Retail = 15,000 | | MF = 10 | | o MF = 10 | \circ MF = 10 | | Lodging = 14 | 4 | o Lodging = 38 | \circ Lodging = 148 | | Retail = $117,000$ | 7,000 | o Retail = 117,000 | o Retail = 132,000 | | SF = 1 | | o SF=1 | \circ SF=1 | | MF = 11 | | \circ MF = 11 | \circ MF = 11 | | \circ Lodging = 0 | | \circ Lodging = 29 | \circ Lodging = 88 | | Retail = 88, | 88,000 | o Retail = 99,000 | o Retail = 107,000 | | MF = 4 | | \circ MF = 4 | \circ MF=4 | | \circ Lodging = 71 | 71 | o Lodging = 99 | \circ Lodging = 139 | | o Retail = $15,000$ | ,000 | o Retail = 54,000 | o Retail = 59,000 | | o Church = 3,000 | ,000 | o Church = 3,000 | Church = 3,000 | | DIV Douly | | DIV Dark | | | CE - 30 | | | | | MF = 39 | | | | | L_0 define = 308 | 308 | Lodg | ○ Lodging = 736 | | Retail = 256,000 | 000'99 | o Retail = 422,000 | o Retail = 495,000 | | | c = 7,400 | o Post Office = 7,400 | \circ Post Office = 7,400 | | | 3,000 | o Church = 3,000 | \circ Church = 3,000 | | \circ XC Skiers = 150 | = 150 | \circ XC Skiers = 150 | \circ XC Skiers = 150 | | | | | Sports/Event (Retail proxy) = 4,000 s.f. Civic Center Offices (Retail proxy) = 2,000 s.f. | | | | | | | | ű | |---|---| | | u | | ۰ | r | | | ř | | | ŧ | | | c | | ¥ | _ | | | 2 | | | _ | | | | , A | | | |-------|--------------------------|-------------------------------|--------------------------------------|--| | TAZ | Existing Land Use | Buildout Baseline
Land Use | Buildout DNDP
Land Use (Alts 4/5) | Change in Land Use Between
Buildout "Baseline" and DNDP (Alts 4/5) | | 36 | \circ SF/MF = 10 | \circ SF/MF = 18 | \circ SF/MF = 18 | \circ SF/MF = 0 | | | \circ Lodging = 151 | \circ Lodging = 152 | \circ Lodging = 211 | \circ Lodging = 59 | | | · | o Retail =75,000 | o Retail = 83,000 | o Retail = 8,000 | | 37 | o SF/MF = 14 | \circ SF/MF = 14 | \circ SF/MF = 14 | \circ SF/MF = 0 | | | \circ Lodging = 72 | \circ Lodging = 99 | \circ Lodging = 150 | \circ Lodging = 51 | | | o Retail =36,000 | o Retail = $77,000$ | o Retail = $84,000$ | \circ Retail = 7,000 | | 38 | \circ SF/MF = 18 | \circ SF/MF = 18 | \circ SF/MF = 50 | \circ SF/MF = 32 | | | (USFS Compound) | | o Civic Center(retail | • Civic Center(retail proxy) = $2,000$ | | | | | | o Retail = 15,000 | | | | | | | | 39 | (USFS Campground) | | | \circ SF/MF = 50 \circ position 15 000 | | | | | | | | 74 | \circ SF/MF = 10 | \circ SF/MF = 10 | \circ SF/MF = 10 | \circ SF/MF = 0 | | | \circ Lodging = 14 | \circ Lodging = 38 | \circ Lodging = 148 | \circ Lodging = 110 | | | o Retail = 117,000 | o Retail = $117,000$ | o Retail = $132,000$ | o Retail = 15,000 | | 62 | \circ SF/MF = 12 | \circ SF/MF = 12 | \circ SF/MF = 12 | \circ SF/MF = 0 | | | | \circ Lodging = 29 | \circ Lodging = 88 | \circ Lodging = 59 | | | o Retail =88,000 | o Retail = $99,000$ | o Retail = $107,000$ | o Retail = 8,000 | | 83 | \circ SF/MF = 4 | \circ SF/MF = 4 | \circ SF/MF = 4 | \circ SF/MF = 0 | | | \circ Lodging = 71 | \circ Lodging = 99 | \circ Lodging = 139 | \circ Lodging = 40 | | | o Retail = $15,000$ | o Retail = $54,000$ | o Retail = $59,000$ | o Retail = 5,000 | | 87 | (Existing Civic | | o Sports/Event | o Sports/Event (Retail proxy)= $2,000$ | | | Center Site) | | (Retail proxy) = 2,000 | | | 90 | (RV Park) | | o Sports/Event | o Sports/Event (Retail proxy) = $2,000$ | | | , | | (Retail proxy) = $2,000$ | | | | ○ SF/MF = 68 | \circ SF/MF = 76 | o SF /MF= 158 | o SF /MF= 82 units (82 new USFS units) | | Total | \circ Lodging = 308 | \circ Lodging = 417 | \circ Lodging = 736 | ○ Lodging = 319 rooms | | | \circ Retail = 256,000 | \circ Retail = 422,000 | \circ Retail = 495,000 | o Retail = $73,000 \text{ s.f.}$ (includes $30,000 \text{ s.f.}$ on USFS) | | | | | | \circ Sports/Event (Retail proxy) = 4,000 s.f. | | | | | | • Civic Center Offices (Retail proxy) = $2,000 \text{ s.f.}$ | ## Travel Model Level of Service Reports # **Base (Existing Conditions) LOS Reports** HCM Unsignalized Intersection Capacity Analysis 1: Forest Trail & Minaret Road Saturday Peak - Base 9/23/2010 | | ۶ | → | • | • | ← | * | 4 | † | / | - | ļ | 4 | |--------------------------|-----------|----------|-------|------|----------|-----------|------|----------|----------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | | ቆ | | | 4 | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 25 | 90 | 15 | 15 | 10 | 70 | 165 | 25 | 65 | 635 | 100 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90
| 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 28 | 100 | 17 | 17 | 11 | 78 | 183 | 28 | 72 | 706 | 111 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1278 | 1272 | 761 | 1372 | 1314 | 197 | 817 | | | 211 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1278 | 1272 | 761 | 1372 | 1314 | 197 | 817 | | | 211 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 81 | 81 | 75 | 76 | 88 | 99 | 90 | | | 95 | | | | cM capacity (veh/h) | 114 | 143 | 405 | 71 | 135 | 844 | 811 | | | 1359 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 150 | 44 | 289 | 889 | | | | | | | | | | Volume Left | 22 | 17 | 78 | 72 | | | | | | | | | | Volume Right | 100 | 11 | 28 | 111 | | | | | | | | | | cSH | 236 | 119 | 811 | 1359 | | | | | | | | | | Volume to Capacity | 0.64 | 0.37 | 0.10 | 0.05 | | | | | | | | | | Queue Length 95th (ft) | 96 | 38 | 8 | 4 | | | | | | | | | | Control Delay (s) | 43.5 | 52.1 | 3.5 | 1.4 | | | | | | | | | | Lane LOS | Е | F | Α | Α | | | | | | | | | | Approach Delay (s) | 43.5 | 52.1 | 3.5 | 1.4 | | | | | | | | | | Approach LOS | Е | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 8.1 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 61.2% | 10 | CU Lev | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 1 HCM Unsignalized Intersection Capacity Analysis 2: Lake Mary Road & Davidson Saturday Peak - Base 9/23/2010 | | ۶ | → | • | • | ← | • | 1 | † | ~ | / | ļ | 1 | |--------------------------|------------|----------|-------|------|----------|-----------|------|------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | | ર્ન | 7 | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 0 | 95 | 15 | 70 | 95 | 30 | 10 | 0 | 55 | 45 | 0 | 5 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 0 | 106 | 17 | 78 | 106 | 33 | 11 | 0 | 61 | 50 | 0 | 6 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 139 | | | 122 | | | 397 | 408 | 114 | 422 | 400 | 122 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 139 | | | 122 | | | 397 | 408 | 114 | 422 | 400 | 122 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 100 | | | 95 | | | 98 | 100 | 93 | 90 | 100 | 99 | | cM capacity (veh/h) | 1445 | | | 1465 | | | 537 | 504 | 939 | 486 | 510 | 929 | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 122 | 217 | 72 | 56 | | | | | | | | | | Volume Left | 0 | 78 | 11 | 50 | | | | | | | | | | Volume Right | 17 | 33 | 61 | 6 | | | | | | | | | | cSH | 1445 | 1465 | 1109 | 510 | | | | | | | | | | Volume to Capacity | 0.00 | 0.05 | 0.07 | 0.11 | | | | | | | | | | Queue Length 95th (ft) | 0 | 4 | 5 | 9 | | | | | | | | | | Control Delay (s) | 0.0 | 3.0 | 9.5 | 12.9 | | | | | | | | | | Lane LOS | | Α | Α | В | | | | | | | | | | Approach Delay (s) | 0.0 | 3.0 | 9.5 | 12.9 | | | | | | | | | | Approach LOS | | | Α | В | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 4.4 | | | | | | | | | | | Intersection Capacity Ut | tilization | 1 | 33.5% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | , , | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 2 HCM Signalized Intersection Capacity Analysis 3: Lake Mary Road & Canyon Boulevard Saturday Peak - Base 9/23/2010 | | • | → | + | 4 | \ | 4 | | | |-----------------------------------|------|----------|----------|----------------------|----------|----------------|-----|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | ٦ | † | † | 7 | ሻሻ | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 3434 | | | | | Flt Permitted | 0.63 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1171 | 1863 | 1863 | 1583 | 3434 | | | | | Volume (vph) | 15 | 160 | 185 | 205 | 435 | 10 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 17 | 178 | 206 | 228 | 483 | 11 | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 94 | 5 | 0 | | | | Lane Group Flow (vph) | 17 | 178 | 206 | 134 | 489 | 0 | | | | Turn Type | Perm | | | Perm | | | | | | Protected Phases | | 2 | 6 | | 4 | | | | | Permitted Phases | 2 | | | 6 | | | | | | Actuated Green, G (s) | 25.9 | 25.9 | 25.9 | 25.9 | 10.4 | | | | | Effective Green, g (s) | 26.5 | 26.5 | 26.5 | 26.5 | 10.5 | | | | | Actuated g/C Ratio | 0.59 | 0.59 | 0.59 | 0.59 | 0.23 | | | | | Clearance Time (s) | 4.6 | 4.6 | 4.6 | 4.6 | 4.1 | | | | | Vehicle Extension (s) | 6.1 | 6.1 | 6.1 | 6.1 | 2.0 | | | | | Lane Grp Cap (vph) | 690 | 1097 | 1097 | 932 | 801 | | | | | v/s Ratio Prot | | 0.10 | c0.11 | | c0.14 | | | | | v/s Ratio Perm | 0.01 | | | 0.08 | | | | | | v/c Ratio | 0.02 | 0.16 | 0.19 | 0.14 | 0.61 | | | | | Uniform Delay, d1 | 3.9 | 4.2 | 4.3 | 4.2 | 15.4 | | | | | Progression Factor | 1.00 | 1.00 | 0.38 | 0.93 | 1.00 | | | | | Incremental Delay, d2 | 0.1 | 0.3 | 0.3 | 0.3 | 1.0 | | | | | Delay (s) | 3.9 | 4.5 | 2.0 | 4.2 | 16.4 | | | | | Level of Service | Α | Α | Α | Α | В | | | | | Approach Delay (s) | | 4.5 | 3.1 | | 16.4 | | | | | Approach LOS | | Α | Α | | В | | | | | Intersection Summary | | | | | | | | | | HCM Average Control Delay | | | 9.2 | H | ICM Lev | vel of Service | A | | | HCM Volume to Capacity ratio | | | 0.31 | | | | | | | Actuated Cycle Length (s) | | | 45.0 | Sum of lost time (s) | | | 8.0 | | | Intersection Capacity Utilization | | | 31.9% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | | | | | | c Critical Lane Group | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 3 HCM Signalized Intersection Capacity Analysis 4: Lake Mary Road & Minaret Road Saturday Peak - Base 9/23/2010 | | • | - | • | • | - | • | 1 | † | - | - | ţ | 4 | |-----------------------------------|-------|----------|-------|----------------------|----------|----------|-------|----------|------|-------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ř | ^ | 7 | ŗ | ^ | 7 | J. | ^ | 7 | ሻሻ | ĵ. | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | | | Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3539 | 1583 | 1770 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1674 | | | Flt Permitted | 0.47 | 1.00 | 1.00 | 0.36 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 867 | 3539 | 1583 | 673 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1674 | | | Volume (vph) | 85 | 385 | 125 | 70 | 295 | 125 | 305 | 240 | 85 | 475 | 50 | 105 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 94 | 428 | 139 | 78 | 328 | 139 | 339 | 267 | 94 | 528 | 56 | 117 | | RTOR Reduction (vph) | 0 | 0 | 73 | 0 | 0 | 107 | 0 | 0 | 65 | 0 | 84 | 0 | | Lane Group Flow (vph) | 94 | 428 | 66 | 78 | 328 | 32 | 339 | 267 | 29 | 528 | 89 | 0 | | Turn Type | pm+pt | | Perm | pm+pt | | Perm | Split | | Perm | Split | | | | Protected Phases | 5 | 2 | | . i | 6 | | . 8 | 8 | | . 7 | 7 | | | Permitted Phases | 2 | | 2 | 6 | | 6 | | | 8 | | | | | Actuated Green, G (s) | 24.8 | 20.0 | 20.0 | 24.8 | 20.0 | 20.0 | 26.4 | 26.4 | 26.4 | 20.3 | 20.3 | | | Effective Green, g (s) | 25.8 | 20.9 | 20.9 | 25.8 | 20.9 | 20.9 | 27.3 | 27.3 | 27.3 | 20.9 | 20.9 | | | Actuated g/C Ratio | 0.29 | 0.23 | 0.23 | 0.29 | 0.23 | 0.23 | 0.30 | 0.30 | 0.30 | 0.23
 0.23 | | | Clearance Time (s) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 2.5 | 4.7 | 4.7 | 2.5 | 4.6 | 4.6 | 5.2 | 5.2 | 5.2 | 6.2 | 6.2 | | | Lane Grp Cap (vph) | 298 | 822 | 368 | 253 | 822 | 368 | 537 | 565 | 480 | 797 | 389 | | | v/s Ratio Prot | c0.02 | c0.12 | | 0.02 | 0.09 | | c0.19 | 0.14 | | c0.15 | 0.05 | | | v/s Ratio Perm | 0.07 | | 0.04 | 0.07 | | 0.02 | | | 0.02 | | | | | v/c Ratio | 0.32 | 0.52 | 0.18 | 0.31 | 0.40 | 0.09 | 0.63 | 0.47 | 0.06 | 0.66 | 0.23 | | | Uniform Delay, d1 | 24.3 | 30.2 | 27.7 | 24.2 | 29.2 | 27.1 | 27.0 | 25.5 | 22.2 | 31.3 | 28.0 | | | Progression Factor | 0.82 | 0.80 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.4 | 2.1 | 0.9 | 0.5 | 1.4 | 0.5 | 5.6 | 2.8 | 0.2 | 4.3 | 1.4 | | | Delay (s) | 20.2 | 26.4 | 26.9 | 24.7 | 30.7 | 27.5 | 32.6 | 28.3 | 22.5 | 35.7 | 29.4 | | | Level of Service | С | С | С | С | С | С | С | С | С | D | С | | | Approach Delay (s) | | 25.6 | | | 29.0 | | | 29.6 | | | 34.1 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 29.7 | HCM Level of Service | | | | | С | | | | | HCM Volume to Capacity ratio | | | 0.59 | | | | | | | | | | | Actuated Cycle Length (s) | | | 90.0 | 5 | Sum of I | ost time | (s) | | 16.0 | | | | | Intersection Capacity Utilization | | 1 | 55.2% | 10 | CU Lev | el of Se | rvice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 4 HCM Unsignalized Intersection Capacity Analysis 5: Main Street & Mountain Boulevard Saturday Peak - Base 9/23/2010 | | ۶ | - | \rightarrow | • | ← | • | 4 | † | <i>></i> | - | ļ | 4 | |---------------------------|------------|------|---------------|------|----------|-----------|-------------|-------------|-------------|-------------|-------------|-----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 930 | 35 | 15 | 435 | 30 | 5 | 5 | 10 | 20 | 5 | 20 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 1033 | 39 | 17 | 483 | 33 | 6 | 6 | 11 | 22 | 6 | 22 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | F47 | | | 4070 | | | 4007 | 4047 | 500 | 4400 | 4050 | 050 | | vC, conflicting volume | 517 | | | 1072 | | | 1397 | 1647 | 536 | 1108 | 1650 | 258 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | F47 | | | 1072 | | | 4007 | 4047 | 500 | 4400 | 4050 | 050 | | vCu, unblocked vol | 517
4.1 | | | 4.1 | | | 1397
7.5 | 1647
6.5 | 536
6.9 | 1108
7.5 | 1650
6.5 | 258 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s)
tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 98 | | | 97 | | | 94 | 94 | 98 | 3.5
85 | 94 | 3.3
97 | | cM capacity (veh/h) | 1045 | | | 646 | | | 90 | 94 | 489 | 148 | 93 | 741 | | , , , | | | | | | | 90 | 94 | 409 | 140 | 93 | 741 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total | 539 | 556 | 258 | 275 | 22 | 50 | | | | | | | | Volume Left | 22 | 0 | 17 | 0 | 6 | 22 | | | | | | | | Volume Right | 0 | 39 | 0 | 33 | 11 | 22 | | | | | | | | cSH | 1045 | 1700 | 646 | 1700 | 154 | 209 | | | | | | | | Volume to Capacity | 0.02 | 0.33 | 0.03 | 0.16 | 0.14 | 0.24 | | | | | | | | Queue Length 95th (ft) | 2 | 0 | 2 | 0 | 12 | 23 | | | | | | | | Control Delay (s) | 0.6 | 0.0 | 1.0 | 0.0 | 32.2 | 27.6 | | | | | | | | Lane LOS | A | | A | | D | D | | | | | | | | Approach Delay (s) | 0.3 | | 0.5 | | 32.2 | 27.6 | | | | | | | | Approach LOS | | | | | D | D | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 1.6 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 52.3% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 5 HCM Unsignalized Intersection Capacity Analysis 6: Main Street & Center Street Saturday Peak - Base 9/23/2010 | | ۶ | → | • | • | ← | • | 4 | † | ~ | > | ļ | 1 | |--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ľ | ↑ ↑ | | ٦ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 50 | 715 | 55 | 25 | 485 | 35 | 25 | 5 | 55 | 25 | 0 | 20 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 56 | 794 | 61 | 28 | 539 | 39 | 28 | 6 | 61 | 28 | 0 | 22 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 1207 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 578 | | | 856 | | | 1283 | 1569 | 428 | 1186 | 1581 | 289 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 578 | | | 856 | | | 1283 | 1569 | 428 | 1186 | 1581 | 289 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 94 | | | 96 | | | 75 | 94 | 89 | 76 | 100 | 97 | | cM capacity (veh/h) | 992 | | | 780 | | | 110 | 100 | 575 | 115 | 98 | 708 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 56 | 530 | 326 | 28 | 359 | 219 | 94 | 50 | | | | | | Volume Left | 56 | 0 | 0 | 28 | 0 | 0 | 28 | 28 | | | | | | Volume Right | 0 | 0 | 61 | 0 | 0 | 39 | 61 | 22 | | | | | | cSH | 992 | 1700 | 1700 | 780 | 1700 | 1700 | 228 | 183 | | | | | | Volume to Capacity | 0.06 | 0.31 | 0.19 | 0.04 | 0.21 | 0.13 | 0.41 | 0.27 | | | | | | Queue Length 95th (ft) | 4 | 0 | 0 | 3 | 0 | 0 | 48 | 26 | | | | | | Control Delay (s) | 8.8 | 0.0 | 0.0 | 9.8 | 0.0 | 0.0 | 31.5 | 31.9 | | | | | | Lane LOS | Α | | | Α | | | D | D | | | | | | Approach Delay (s) | 0.5 | | | 0.4 | | | 31.5 | 31.9 | | | | | | Approach LOS | | | | | | | D | D | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 3.2 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 40.2% | l l | CU Leve | el of Sei | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 7: Main Street & Forest Trail Saturday Peak - Base 9/23/2010 | | ۶ | → | • | • | • | • | 1 | † | - | - | ţ | 4 | |--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ↑ ↑ | | | - € | | | ની | 7 | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 15 | 870 | 15 | 15 | 535 | 60 | 15 | 0 | 20 | 125 | 5 | 30 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 17 | 967 | 17 | 17 | 594 | 67 | 17 | 0 | 22 | 139 | 6 | 33 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | 1 | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 793 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 661 | | | 983 | | | 1342 | 1703 | 492 | 1200 | 1678 | 331 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 661 | | | 983 | | | 1342 | 1703 | 492 | 1200 | 1678 | 331 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 98 | | | 98 | | | 83 | 100 | 96 | 0 | 94 | 95 | | cM capacity (veh/h) | 923 | | | 698 | | | 97 | 87 | 523 | 130 | 90 | 665 | | Direction, Lane # | EB 1 | EB 2 | EB 3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 17 | 644 | 339 | 17 | 396 | 265 | 39 | 178 | | | | | | Volume Left | 17 | 0 | 0 | 17 | 0 | 0 | 17 | 139 | | | | | | Volume Right | 0 | 0 | 17 | 0 | 0 | 67 | 22 | 33 | | | | | | cSH | 923 | 1700 | 1700 | 698 |
1700 | 1700 | 181 | 152 | | | | | | Volume to Capacity | 0.02 | 0.38 | 0.20 | 0.02 | 0.23 | 0.16 | 0.21 | 1.17 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 2 | 0 | 0 | 20 | 248 | | | | | | Control Delay (s) | 9.0 | 0.0 | 0.0 | 10.3 | 0.0 | 0.0 | 30.2 | 184.6 | | | | | | Lane LOS | Α | | | В | | | D | F | | | | | | Approach Delay (s) | 0.1 | | | 0.3 | | | 30.2 | 184.6 | | | | | | Approach LOS | | | | | | | D | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 18.1 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 45.0% | - 1 | CU Lev | el of Sei | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 7 HCM Unsignalized Intersection Capacity Analysis 8: Main Street & Laurel Mountain Road Saturday Peak - Base 9/23/2010 | | - | \rightarrow | • | ← | 4 | <i>></i> | | | |--------------------------|------------|---------------|-------|----------|---------|---------------|---|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | † } | | ሻ | ^ | ¥ | | | | | Sign Control | Free | | | Free | Stop | | | | | Grade | 0% | | | 0% | 0% | | | | | Volume (veh/h) | 840 | 165 | 20 | 545 | 95 | 30 | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Hourly flow rate (vph) | 933 | 183 | 22 | 606 | 106 | 33 | | | | Pedestrians | | | | | | | | | | Lane Width (ft) | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | Percent Blockage | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | Median type | | | | | None | | | | | Median storage veh) | | | | | | | | | | Upstream signal (ft) | | | | 505 | | | | | | pX, platoon unblocked | | | | | | | | | | vC, conflicting volume | | | 1117 | | 1372 | 558 | | | | vC1, stage 1 conf vol | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | vCu, unblocked vol | | | 1117 | | 1372 | 558 | | | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | | | tC, 2 stage (s) | | | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | | | p0 queue free % | | | 96 | | 20 | 93 | | | | cM capacity (veh/h) | | | 621 | | 132 | 473 | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | WB 3 | NB 1 | | | | Volume Total | 622 | 494 | 22 | 303 | 303 | 139 | | | | Volume Left | 0 | 0 | 22 | 0 | 0 | 106 | | | | Volume Right | 0 | 183 | 0 | 0 | 0 | 33 | | | | cSH | 1700 | 1700 | 621 | 1700 | 1700 | 160 | | | | Volume to Capacity | 0.37 | 0.29 | 0.04 | 0.18 | 0.18 | 0.87 | | | | Queue Length 95th (ft) | 0 | 0 | 3 | 0 | 0 | 151 | | | | Control Delay (s) | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 | 96.6 | | | | Lane LOS | | | В | | | F | | | | Approach Delay (s) | 0.0 | | 0.4 | | | 96.6 | | | | Approach LOS | | | | | | F | | | | Intersection Summary | | | | | | | | | | Average Delay | | | 7.3 | | | | | | | Intersection Capacity Ut | ilization | | 42.2% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 9: Main Street & Old Mammoth Road Saturday Peak - Base 9/23/2010 | Lane Configurations | | - | • | • | • | 1 | / | | |--|------------------------|-----------|-------|-------|----------|-----------|----------------|---| | Ideal Flow (vphpl) | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Total Lost time (s) | Lane Configurations | ^ | 7 | | ^ | ሻ | 7 | | | Lane Util. Factor | Ideal Flow (vphpl) | | | | | | | | | Fit Protected 1.00 0.85 1.00 1.00 1.00 0.85 Fit Protected 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 3539 1583 1770 3539 1770 1583 Fit Permitted 1.00 1.00 0.43 1.00 0.95 1.00 Satd. Flow (perm) 3539 1583 805 3539 1770 1583 Volume (vph) 310 560 90 230 310 70 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 344 622 100 256 344 78 RTOR Reduction (vph) 0 433 0 0 0 47 Lane Group Flow (vph) 344 189 100 256 344 31 Turn Type Perm pm+pt Perm Protected Phases 2 1 6 3 Permitted Phases 2 1 6 3 Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated g/C Ratio 0.30 0.30 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 W/s Ratio Perm | Total Lost time (s) | | | | | | | | | Fit Protected | Lane Util. Factor | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | Satd. Flow (prot) 3539 1583 1770 3539 1770 1583 Fit Permitted 1.00 1.00 0.43 1.00 0.95 1.00 Satd. Flow (perm) 3539 1583 805 3539 1770 1583 Volume (vph) 310 560 90 230 310 70 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 344 622 100 256 344 78 RTOR Reduction (vph) 0 433 0 0 0 47 Lane Group Flow (vph) 344 189 100 256 344 31 Turn Type Perm pm+pt Permitted Phases 2 1 6 3 Permitted Phases 2 1 6 3 Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated GyC Ratio 0.30 0.30 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 V/s Ratio Prot 0.10 0.02 0.07 c0.19 V/s Ratio Prot 0.10 0.02 0.07 c0.19 V/s Ratio Prot 0.10 1.00 1.00 1.00 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B A A B B Approach Delay (s) 16.4 Approach LOS B ACH 14.3 HCM Level of Service HCM Volume to Capacity ratio Analysis Period (min) 15 | Frt | | | | | | | | | Fit Permitted 1.00 1.00 0.43 1.00 0.95 1.00 Satd. Flow (perm) 3539 1583 805 3539 1770 1583 Volume (vph) 310 560 90 230 310 70 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 344 622 100 256 344 78 RTOR Reduction (vph) 0 433 0 0 0 0 47 Lane Group Flow (vph) 344 189 100 256 344 31 Turn Type Perm pm+pt Protected Phases 2 1 6 3 Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated Green, G (s) 16.4 16.4 25.0 25.0 25.2 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated Green (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 V/s Ratio Prot 0.10 c0.02 0.07 c0.19 V/s Ratio Prot 0.10 c0.02 0.07 c0.19 V/s Ratio Porm c0.12 0.08 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B A A B B AAPproach LOS B ACTUATED STATE AND ACTUATED STATE ACTUATED STATE ACTUATED ACTUATED STATE ACTUATED AC | Flt Protected | | 1.00 | 0.95 | | | 1.00 | | | Satd. Flow (perm) 3539 1583 805 3539 1770 1583 | Satd. Flow (prot) | 3539 | | 1770 | 3539 | 1770 | 1583 | | | Volume (vph) 310 560 90 230 310 70 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 344 622 100 256 344 78 RTOR Reduction (vph) 0 433 0 0 0 47 Lane Group Flow (vph) 344 189 100 256 344 31 Turn Type Perm pm+pt Perm Portected Phases 2 1 6 3 Permitted Phases 2 1 6 3 Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated g/C Ratio 0.30 0.30 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 V/s Ratio Prot 0.10 0.002 0.07 c0.19 V/s Ratio Perm 0.12 0.08 0.02 V/s Ratio Perm 0.32 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A
A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B | Flt Permitted | | | | | | | | | Peak-hour factor, PHF 0.90 Add Add Add Base Add Add Base Add Add Base Add <t< td=""><td>Satd. Flow (perm)</td><td>3539</td><td></td><td></td><td>3539</td><td></td><td></td><td></td></t<> | Satd. Flow (perm) | 3539 | | | 3539 | | | | | Adj. Flow (vph) 344 622 100 256 344 78 RTOR Reduction (vph) 0 433 0 0 0 0 47 Lane Group Flow (vph) 344 189 100 256 344 31 Turn Type Perm pm+pt Perm Pm+pt Protected Phases 2 1 6 3 Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated g/C Ratio 0.30 0.30 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 v/s Ratio Prot 0.10 c0.02 0.07 c0.19 v/s Ratio Perm c0.12 0.08 0.02 V/s Ratio Port 0.30 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B B A A B B B Approach Delay (s) 16.4 Approach LOS B A B B Intersection Summary HCM Volume to Capacity ratio Actuated Cycle Length (s) intersection Capacity Utilization Analysis Period (min) 15 | Volume (vph) | 310 | 560 | 90 | 230 | 310 | 70 | | | RTOR Reduction (vph) 0 433 0 0 0 47 Lane Group Flow (vph) 344 189 100 256 344 31 Turn Type | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Lane Group Flow (vph) 344 189 100 256 344 31 Turn Type | Adj. Flow (vph) | 344 | 622 | 100 | 256 | 344 | 78 | | | Turn Type | RTOR Reduction (vph) | 0 | 433 | 0 | 0 | 0 | 47 | | | Protected Phases 2 1 6 3 Permitted Phases 2 6 6 3 Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated g/C Ratio 0.30 0.30 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 v/s Ratio Prot 0.10 c0.02 0.07 c0.19 v/s Ratio Perm c0.12 0.08 0.02 v/s Ratio Port 0.32 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B A A B B Approach Delay (s) 16.4 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service Actuated Cycle Length (s) 56.8 Intersection Capacity utilization Analysis Period (min) 15 | Lane Group Flow (vph) | 344 | 189 | 100 | 256 | 344 | 31 | | | Permitted Phases 2 6 Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated g/C Ratio 0.30 0.30 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 W/s Ratio Prot 0.10 c0.02 0.07 c0.19 c0.02 0.07 c0.19 c0.02 c0.02 c0.03 c0.02 c0.03 | Turn Type | | Perm | pm+pt | | | Perm | | | Actuated Green, G (s) 16.4 16.4 25.0 25.0 22.3 22.3 Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated g/C Ratio 0.30 0.30 0.46 0.40 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 Vehicle Perm co.12 0.08 0.02 0.07 co.19 Vehicle Perm co.12 0.08 0.02 0.07 co.19 Vehicle Ratio Prot 0.10 0.02 0.07 co.19 Vehicle Perm co.12 0.08 0.02 0.16 0.48 0.05 0.02 0.07 co.19 Vehicle Perm co.12 0.08 0.02 0.07 co.19 Vehicle Perm co.12 0.08 0.02 0.16 0.48 0.05 0.02 0.07 co.19 Vehicle Perm co.12 0.08 0.02 0.16 0.48 0.05 0.02 0.16 0.18 0.02 0.19 0.02 0.16 0.18 0.02 0.16 0.18 0.02 0.19 0.02 0.19 0.02 0.10 0.00 0.02 0.07 0.02 | Protected Phases | 2 | | | 6 | 3 | | | | Effective Green, g (s) 17.3 17.3 25.9 25.9 22.9 22.9 Actuated g/C Ratio 0.30 0.30 0.46 0.46 0.40 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 5.2 5.2 Lane Grp Cap (vph) 1078 482 445 1614 714 638 v/s Ratio Prot 0.10 c0.02 0.07 c0.19 v/c Ratio Perm 0.12 0.08 0.07 c0.19 v/c Ratio Perm 0.32 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B B A B B B A B B B A B B B A B B B B A B | Permitted Phases | | 2 | 6 | | | 3 | | | Actuated g/C Ratio Clearance Time (s) 4.9 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 | Actuated Green, G (s) | 16.4 | 16.4 | 25.0 | 25.0 | 22.3 | | | | Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 < | Effective Green, g (s) | 17.3 | 17.3 | 25.9 | 25.9 | 22.9 | 22.9 | | | Vehicle Extension (s) 5.2 5.2 2.5 5.2 | Actuated g/C Ratio | 0.30 | 0.30 | 0.46 | 0.46 | 0.40 | 0.40 | | | Lane Grp Cap (vph) 1078 482 445 1614 714 638 v/s Ratio Prot 0.10 c0.02 0.07 c0.19 v/s Ratio Perm c0.12 0.08 v/c Ratio 0 0.32 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B B A A B B Approach Delay (s) 16.4 9.2 14.1 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | Clearance Time (s) | | | | | | 4.6 | | | w/s Ratio Prot 0.10 c0.02 0.07 c0.19 w/s Ratio Perm c0.12 0.08 0.02 w/s Ratio 0.32 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B A A B B Approach Delay (s) 16.4 9.2 14.1 A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 A Sum of lost time (s) Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Leve | Vehicle Extension (s) | 5.2 | 5.2 | 2.5 | 5.2 | 5.2 | 5.2 | | | w/s Ratio Perm c0.12 0.08 0.02 w/c Ratio 0.32 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Level of Service B B A A B B Approach Delay (s) 16.4 9.2 14.1 A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service | Lane Grp Cap (vph) | 1078 | 482 | 445 | 1614 | 714 | 638 | | | w/c Ratio 0.32 0.39 0.22 0.16 0.48 0.05 Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 < | v/s Ratio Prot | 0.10 | | c0.02 | 0.07 | c0.19 | | | | Uniform Delay, d1 15.2 15.6 9.1 9.1 12.6 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 locremental Delay, d2 0.4 1.2 0.2 0.1 2.3 0.1 Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B B A A B B B Approach Delay (s) 16.4 9.2 14.1 Approach LOS B B B A B B B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | v/s Ratio Perm | | c0.12 | 0.08 | | | 0.02 | | | Progression Factor 1.00 <td>v/c Ratio</td> <td>0.32</td> <td>0.39</td> <td>0.22</td> <td>0.16</td> <td>0.48</td> <td>0.05</td> <td></td> | v/c Ratio | 0.32 | 0.39 | 0.22 | 0.16 | 0.48 | 0.05 | | | Incremental Delay, d2 | Uniform Delay, d1 | | 15.6 | | 9.1 | 12.6 | | | | Delay (s) 15.6 16.8 9.3 9.2 14.9 10.5 Level of Service B B B A A B B Approach Delay (s) 16.4 9.2 14.1 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | | Level of Service B B A A B B Approach Delay (s) 16.4 9.2 14.1 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | Incremental Delay, d2 | | | | 0.1 | 2.3 | 0.1 | | | Approach Delay (s) 16.4 9.2 14.1 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | Delay (s) | 15.6 | 16.8 | 9.3 | 9.2 | 14.9 | 10.5 | | | Approach LOS B A B Intersection Summary HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | Level of Service | В | В | Α | Α | В | В | | | Intersection Summary HCM Average Control Delay HCM Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) 14.3 HCM Level of Service 14.3 HCM Level of Service 14.3 HCM Level of Service 15.8 Sum of lost time (s) ICU Level of Service | Approach Delay (s) | 16.4 | | | 9.2 | 14.1 | | | | HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | Approach LOS | В | | | Α | В | | | | HCM Volume to Capacity ratio 0.42 Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | Intersection Summary | | | | | | | | | Actuated Cycle Length (s) 56.8 Sum of lost time (s) Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | | | | | Н | HCM Le | vel of Service |) | | Intersection Capacity Utilization 46.3% ICU Level of Service Analysis Period (min) 15 | | | | | | | | | | Analysis Period (min) 15 | | | | | 5 | Sum of le | ost time (s) | | | | | ilization | | | l l | CU Leve | el of Service | | | Critical Lane Group | Analysis Period (min) | | | 15 | | | | | | o ontion care croup | c Critical Lane Group | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 9 HCM Unsignalized Intersection Capacity Analysis 10: Main Street & Sierra Park Boulevard Saturday Peak - Base 9/23/2010 | | ۶ | → | \rightarrow | • | ← | • | 4 | † | / | - | ļ | 1 | |--------------------------|-----------|------------|---------------|------|------------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | , J | † } | | Ţ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 320 | 55 | 25 | 265 | 5 | 25 | 5 | 30 | 5 | 5 | 10 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 356 | 61 | 28 | 294 | 6 | 28 | 6 | 33 | 6 | 6 | 11 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | 544 | | | | | | | | | | | | pX, platoon unblocked | | | | 0.98 | | | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | | vC, conflicting volume | 300 | | | 417 | | | 625 | 764 | 208 | 589 | 792 | 150 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 300 | | | 378 | | | 592 | 734 | 165 | 555 | 762 | 150 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 99 | | | 98 | | | 92 | 98 | 96 | 99 | 98 | 99 | | cM capacity (veh/h) | 1258 | | | 1149 | | | 362 | 327 | 830 | 374 | 314 | 870 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 11 | 237 | 180 | 28 | 196 | 104 | 67 | 22 | | | | | | Volume Left | 11 | 0 | 0 | 28 | 0 | 0 | 28 | 6 | | | | | | Volume Right | 0 | 0 | 61 | 0 | 0 | 6 | 33 | 11 | | | | | | cSH | 1258 | 1700 | 1700 | 1149 | 1700 | 1700 | 498 | 491 | | | | | | Volume to Capacity | 0.01 | 0.14 | 0.11 | 0.02 | 0.12 | 0.06 | 0.13 | 0.05 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 2 | 0 | 0 | 12 | 4 | | | | | | Control Delay (s) | 7.9 | 0.0 | 0.0 | 8.2 | 0.0 | 0.0 | 13.4 | 12.7 | | | | | | Lane LOS | Α | | | Α | | | В | В | | | | | | Approach Delay (s) | 0.2 | | | 0.7 | | | 13.4 | 12.7 | | | | | | Approach LOS | | | | | | | В | В | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 1.8 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 29.8% | - 1 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 11: Tavern Road & Old Mammoth Road Saturday Peak - Base 9/23/2010 | | • | - | • | • | • | • | 4 | † | - | / | ţ | 4 | |--------------------------|-----------|------|-------|------|--------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ٦ | f) | | ሻ | - ↑ | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 5 | 25 | 5 | 5 | 25 | 30 | 385 | 10 | 15 | 645 | 25 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 6 | 28 | 6 | 6 | 28 | 33 | 428 | 11 | 17 | 717 | 28 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 760 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1289 | 1269 | 731 | 1281 | 1278 | 433 | 744 | | | 439 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1289 | 1269 | 731 | 1281 | 1278 | 433 | 744 | | | 439 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 91 | 97 | 93 | 96 | 96 | 96 | 96 | | | 99 | | | | cM capacity (veh/h) | 125 | 159 | 422 | 124 | 157 | 622 | 863 | | | 1121 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 44 | 39 | 33 | 439 | 17 | 744 | | | | | | | | Volume Left | 11 | 6 | 33 | 0 | 17 | 0 | | | | | | | | Volume Right | 28 | 28 | 0 | 11 | 0 | 28 | | | | | | | | cSH | 235 | 312 | 863 | 1700 | 1121 | 1700 | | | | | | | | Volume to Capacity | 0.19 | 0.12 | 0.04 | 0.26 | 0.01 | 0.44 | | | | | | | | Queue Length 95th (ft) | 17 | 11 | 3 | 0 | 1 | 0 | | | | | | | | Control Delay (s) | 23.9 | 18.2 | 9.3 | 0.0 | 8.3 | 0.0 | | | | | | | | Lane LOS | С | С | Α | | Α | | | | |
| | | | Approach Delay (s) | 23.9 | 18.2 | 0.7 | | 0.2 | | | | | | | | | Approach LOS | С | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 1.7 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 46.1% | 10 | CU Lev | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 11 HCM Unsignalized Intersection Capacity Analysis 12: Sierra Nevada Road & Old Mammoth Road Saturday Peak - Base 9/23/2010 | | ၨ | → | • | • | ← | • | • | † | ~ | > | ļ | 4 | |--------------------------|------------|----------|-------|------|----------|-----------|------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ٦ | ₽ | | ٦ | ₽ | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 15 | 10 | 65 | 15 | 15 | 25 | 55 | 385 | 5 | 35 | 585 | 35 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 17 | 11 | 72 | 17 | 17 | 28 | 61 | 428 | 6 | 39 | 650 | 39 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | 773 | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1333 | 1303 | 669 | 1358 | 1319 | 431 | 689 | | | 433 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1333 | 1303 | 669 | 1358 | 1319 | 431 | 689 | | | 433 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 84 | 92 | 84 | 82 | 88 | 96 | 93 | | | 97 | | | | cM capacity (veh/h) | 105 | 145 | 457 | 92 | 141 | 625 | 905 | | | 1126 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 100 | 61 | 61 | 433 | 39 | 689 | | | | | | | | Volume Left | 17 | 17 | 61 | 0 | 39 | 0 | | | | | | | | Volume Right | 72 | 28 | 0 | 6 | 0 | 39 | | | | | | | | cSH | 254 | 178 | 905 | 1700 | 1126 | 1700 | | | | | | | | Volume to Capacity | 0.39 | 0.34 | 0.07 | 0.25 | 0.03 | 0.41 | | | | | | | | Queue Length 95th (ft) | 44 | 36 | 5 | 0 | 3 | 0 | | | | | | | | Control Delay (s) | 28.0 | 35.4 | 9.3 | 0.0 | 8.3 | 0.0 | | | | | | | | Lane LOS | D | Е | Α | | Α | | | | | | | | | Approach Delay (s) | 28.0 | 35.4 | 1.1 | | 0.4 | | | | | | | | | Approach LOS | D | Е | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 4.2 | | | | | | | | | | | Intersection Capacity Ut | tilization | 1 | 52.5% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | , | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 13: Meridian Boulevard & Majestic Pines Drive Saturday Peak - Base 9/23/2010 | | • | - | • | • | - | ∢ | | | |--------------------------|-----------|------|-------------|------|------------|---------------|---|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | | 4î# | ↑ 1> | | ¥ | | | | | Sign Control | | Free | Free | | Stop | | | | | Grade | | 0% | 0% | | 0% | | | | | Volume (veh/h) | 35 | 270 | 135 | 50 | 35 | 25 | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Hourly flow rate (vph) | 39 | 300 | 150 | 56 | 39 | 28 | | | | Pedestrians | | | | | | | | | | Lane Width (ft) | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | Percent Blockage | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | Median type | | | | | None | | | | | Median storage veh) | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | vC, conflicting volume | 206 | | | | 406 | 103 | | | | vC1, stage 1 conf vol | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | vCu, unblocked vol | 206 | | | | 406 | 103 | | | | tC, single (s) | 4.1 | | | | 6.8 | 6.9 | | | | tC, 2 stage (s) | | | | | | | | | | tF (s) | 2.2 | | | | 3.5 | 3.3 | | | | p0 queue free % | 97 | | | | 93 | 97 | | | | cM capacity (veh/h) | 1363 | | | | 557 | 932 | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | SB 1 | | | | | Volume Total | 139 | 200 | 100 | 106 | 67 | | | | | Volume Left | 39 | 0 | 0 | 0 | 39 | | | | | Volume Right | 0 | 0 | 0 | 56 | 28 | | | | | cSH | 1363 | 1700 | 1700 | 1700 | 669 | | | | | Volume to Capacity | 0.03 | 0.12 | 0.06 | 0.06 | 0.10 | | | | | Queue Length 95th (ft) | 0.03 | 0.12 | 0.00 | 0.00 | 8 | | | | | Control Delay (s) | 2.3 | 0.0 | 0.0 | 0.0 | 11.0 | | | | | Lane LOS | 2.5
A | 3.0 | 3.0 | 3.0 | В | | | | | Approach Delay (s) | 1.0 | | 0.0 | | 11.0 | | | | | Approach LOS | 1.0 | | 0.0 | | В | | | | | Intersection Summary | | | | | | | | | | Average Delay | | | 1.7 | | | | | | | Intersection Capacity Ut | ilization | | 27.3% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | - 3 - 5 10 | | | | | analysis i shou (min) | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 13 HCM Signalized Intersection Capacity Analysis 14: Meridian Boulevard & Minaret Road Saturday Peak - Base 9/23/2010 | | ۶ | → | • | • | ← | • | 4 | † | ~ | > | ļ | 1 | |-------------------------|-------|------------|-------|-------|------------|-----------|--------|----------|------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ٦ | ↑ ↑ | | J. | ↑ ↑ | | ľ | î» | | ٦ | î, | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.97 | | 1.00 | 0.94 | | 1.00 | 0.98 | | 1.00 | 0.97 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3437 | | 1770 | 3319 | | 1770 | 1829 | | 1770 | 1810 | | | Flt Permitted | 0.42 | 1.00 | | 0.56 | 1.00 | | 0.57 | 1.00 | | 0.55 | 1.00 | | | Satd. Flow (perm) | 791 | 3437 | | 1042 | 3319 | | 1053 | 1829 | | 1027 | 1810 | | | Volume (vph) | 95 | 230 | 55 | 20 | 140 | 100 | 30 | 110 | 15 | 215 | 235 | 55 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 106 | 256 | 61 | 22 | 156 | 111 | 33 | 122 | 17 | 239 | 261 | 61 | | RTOR Reduction (vph) | 0 | 23 | 0 | 0 | 91 | 0 | 0 | 5 | 0 | 0 | 8 | 0 | | Lane Group Flow (vph) | 106 | 294 | 0 | 22 | 176 | 0 | 33 | 134 | 0 | 239 | 314 | 0 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | | pm+pt | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 20.0 | 14.9 | | 11.1 | 10.1 | | 20.0 | 18.0 | | 30.3 | 24.2 | | | Effective Green, g (s) | 20.9 | 15.8 | | 12.1 | 11.0 | | 21.0 | 18.9 | | 31.2 | 25.1 | | | Actuated g/C Ratio | 0.35 | 0.26 | | 0.20 | 0.18 | | 0.35 | 0.31 | | 0.52 | 0.42 | | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | | Vehicle Extension (s) | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | | Lane Grp Cap (vph) | 371 | 904 | | 223 | 607 | | 393 | 575 | | 636 | 756 | | | v/s Ratio Prot | c0.03 | c0.09 | | 0.00 | 0.05 | | 0.00 | 0.07 | | c0.05 | c0.17 | | | v/s Ratio Perm | 0.07 | | | 0.02 | | | 0.03 | | | 0.14 | | | | v/c Ratio | 0.29 | 0.33 | | 0.10 | 0.29 | | 0.08 | 0.23 | | 0.38 | 0.42 | | | Uniform Delay, d1 | 13.8 | 17.9 | | 19.4 | 21.2 | | 13.0 | 15.2 | | 8.2 | 12.3 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.3 | 0.4 | | 0.1 | 0.6 | | 0.1 | 0.4 | | 0.3 | 0.8 | | | Delay (s) | 14.1 | 18.3 | | 19.6 | 21.7 | | 13.0 | 15.7 | | 8.5 | 13.1 | | | Level of Service | В | В | | В | С | | В | В | | Α | В | | | Approach Delay (s) | | 17.2 | | | 21.6 | | | 15.2 | | | 11.1 | | | Approach LOS | | В | | | С | | | В | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 15.5 | H | ICM Le | vel of Se | ervice | | В | | | | | HCM Volume to Capaci | | | 0.36 | | | | | | | | | | | Actuated Cycle Length | | | 60.1 | 5 | Sum of le | ost time | (s) | | 8.0 | | | | | Intersection Capacity U | |) | 47.6% | | | el of Ser | | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 15: Meridian Boulevard & Old Mammoth Road Saturday Peak - Base 9/23/2010 | Lane Util. Factor 1.00 0.95 1.0 Frt 1.00 0.98 1.0 Fit Protected 0.95 1.00 0.0 Satd. Flow (prot) 1770 3464 177 | 7 100 1900
1.0 4.0
00 0.95
00 0.97
95 1.00
70 3448
21 1.00 | 1900
1900
5 | 1900
4.0
1.00
1.00
0.95 | 1900
4.0
1.00
1.00
1.00 | 1900
4.0
1.00
0.85
1.00 | SBL
1900
4.0
1.00
1.00 | \$BT
1900
4.0
1.00
1.00 | SBR
1900
4.0
1.00 |
---|--|--|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|----------------------------| | Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 4 <t< th=""><th>00 1900
1.0 4.0
00 0.95
00 0.97
95 1.00
70 3448
21 1.00</th><th>1900
1900
1900
1900
1900
1900
1900
1900</th><th>1900
4.0
1.00
1.00
0.95</th><th>1900
4.0
1.00
1.00</th><th>1900
4.0
1.00
0.85</th><th>1900
4.0
1.00</th><th>1900
4.0
1.00</th><th>1900
4.0
1.00</th></t<> | 00 1900
1.0 4.0
00 0.95
00 0.97
95 1.00
70 3448
21 1.00 | 1900
1900
1900
1900
1900
1900
1900
1900 | 1900
4.0
1.00
1.00
0.95 | 1900
4.0
1.00
1.00 | 1900
4.0
1.00
0.85 | 1900
4.0
1.00 | 1900
4.0
1.00 | 1900
4.0
1.00 | | Total Lost time (s) 4.0 4.0 4 Lane Util. Factor 1.00 0.95 1.0 Frt 1.00 0.98 1.0 Flt Protected 0.95 1.00 0.9 Satd. Flow (prot) 1770 3464 17 | 1.0 4.0
00 0.95
00 0.97
95 1.00
70 3448
21 1.00 |)
5
7
) | 4.0
1.00
1.00
0.95 | 4.0
1.00
1.00 | 4.0
1.00
0.85 | 4.0
1.00 | 4.0
1.00 | 4.0
1.00 | | Lane Util. Factor 1.00 0.95 1.0 Frt 1.00 0.98 1.0 Flt Protected 0.95 1.00 0.0 Satd. Flow (prot) 1770 3464 177 | 00 0.95
00 0.97
95 1.00
70 3448
21 1.00 | ;
;
) | 1.00
1.00
0.95 | 1.00 | 1.00
0.85 | 1.00 | 1.00 | 1.00 | | Frt 1.00 0.98 1.0
Flt Protected 0.95 1.00 0.9
Satd. Flow (prot) 1770 3464 177 | 00 0.97
95 1.00
70 3448
21 1.00 | ,
)
3 | 1.00
0.95 | 1.00 | 0.85 | | | | | Flt Protected 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1770 3464 17 | 95 1.00
70 3448
21 1.00 |)
3 | 0.95 | | | 1.00 | 1 00 | | | Satd. Flow (prot) 1770 3464 17 | 70 3448
21 1.00 | 3 | | 1.00 | 1 00 | | 1.00 | 0.85 | | | 21 1.00 | | 1770 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | ١ | | 1863 | 1583 | 1770 | 1863 | 1583 | | | 84 3448 | | 0.36 | 1.00 | 1.00 | 0.54 | 1.00 | 1.00 | | Satd. Flow (perm) 715 3464 38 | 04 3440 | 3 | 663 | 1863 | 1583 | 1008 | 1863 | 1583 | | Volume (vph) 175 635 105 9 | 90 340 | 70 | 120 | 215 | 45 | 110 | 275 | 55 | | Peak-hour factor, PHF 0.90 0.90 0.90 0.9 | 90 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) 194 706 117 10 | 00 378 | 78 | 133 | 239 | 50 | 122 | 306 | 61 | | RTOR Reduction (vph) 0 16 0 | 0 20 | 0 | 0 | 0 | 35 | 0 | 0 | 44 | | Lane Group Flow (vph) 194 807 0 10 | 00 436 | 0 6 | 133 | 239 | 15 | 122 | 306 | 17 | | Turn Type pm+pt pm+ | -pt | | pm+pt | | Perm | pm+pt | | Perm | | Protected Phases 5 2 | 1 6 | 6 | 3 | 8 | | 7 | 4 | | | Permitted Phases 2 | 6 | | 8 | | 8 | 4 | | 4 | | Actuated Green, G (s) 29.8 23.1 26 | 5.2 21.3 | 3 | 25.5 | 19.7 | 19.7 | 22.7 | 18.3 | 18.3 | | Effective Green, g (s) 30.8 24.0 27 | 7.2 22.2 | 2 | 26.5 | 20.6 | 20.6 | 23.7 | 19.2 | 19.2 | | Actuated g/C Ratio 0.44 0.34 0.3 | 39 0.32 | 2 | 0.38 | 0.29 | 0.29 | 0.34 | 0.27 | 0.27 | | Clearance Time (s) 4.1 4.9 4 | 1.1 4.9 |) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | | Vehicle Extension (s) 2.5 3.7 2 | 2.5 3.8 | 3 | 2.5 | 3.8 | 3.8 | 2.5 | 3.8 | 3.8 | | Lane Grp Cap (vph) 416 1186 24 | 48 1092 | 2 | 344 | 547 | 465 | 390 | 510 | 434 | | v/s Ratio Prot c0.05 c0.23 0.0 | 03 0.13 | 3 | c0.03 | 0.13 | | 0.02 | c0.16 | | | v/s Ratio Perm 0.16 0.1 | 13 | | 0.11 | | 0.01 | 0.09 | | 0.01 | | v/c Ratio 0.47 0.68 0.4 | 40 0.40 |) | 0.39 | 0.44 | 0.03 | 0.31 | 0.60 | 0.04 | | Uniform Delay, d1 12.6 19.8 14 | 1.6 18.7 | , | 15.2 | 20.1 | 17.6 | 16.5 | 22.1 | 18.7 | | Progression Factor 1.00 1.00 1.0 | 00 1.00 |) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 0.6 1.7 0 | 0.3 | 3 | 0.5 | 0.7 | 0.0 | 0.3 | 2.2 | 0.0 | | Delay (s) 13.2 21.5 15 | 5.4 19.0 |) | 15.7 | 20.8 | 17.7 | 16.9 | 24.3 | 18.7 | | Level of Service B C | В Е | 3 | В | С | В | В | С | В | | Approach Delay (s) 19.9 | 18.4 | ļ | | 18.8 | | | 21.8 | | | Approach LOS B | E | 3 | | В | | | С | | | Intersection Summary | | | | | | | | | | HCM Average Control Delay 19.7 | HCM L | evel of S | ervice | | В | | | | | HCM Volume to Capacity ratio 0.62 | | | | | | | | | | Actuated Cycle Length (s) 70.1 | | lost time | | | 16.0 | | | | | Intersection Capacity Utilization 60.4% | ICU Le | vel of Se | rvice | | В | | | | | Analysis Period (min) 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | LSC, Inc. (BP) | | |----------------------------|--| | Mammoth Lakes (LSC#084870) | | | LSC, Inc. | | HCM Signalized Intersection Capacity Analysis Page 15 HCM Unsignalized Intersection Capacity Analysis 16: Meridian Boulevard & Sierra Park Road Saturday Peak - Base 9/23/2010 | | ۶ | → | • | • | ← | • | 4 | † | <i>></i> | - | ↓ | 1 | |--------------------------|-----------|----------|-------|-------|----------|-----------|------|----------|-------------|------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Stop | | | Stop | | | Volume (vph) | 45 | 130 | 5 | 5 | 125 | 10 | 25 | 5 | 5 | 10 | 5 | 60 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 50 | 144 | 6 | 6 | 139 | 11 | 28 | 6 | 6 | 11 | 6 | 67 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total (vph) | 122 | 78 | 75 | 81 | 39 | 83 | | | | | | | | Volume Left (vph) | 50 | 0 | 6 | 0 | 28 | 11 | | | | | | | | Volume Right (vph) | 0 | 6 | 0 | 11 | 6 | 67 | | | | | | | | Hadj (s) | 0.24 | -0.02 | 0.07 | -0.06 | 0.09 | -0.42 | | | | | | | | Departure Headway (s) | 5.2 | 4.9 | 5.1 | 4.9 | 4.9 | 4.4 | | | | | | | | Degree Utilization, x | 0.18 | 0.11 | 0.11 | 0.11 | 0.05 | 0.10 | | | | | | | | Capacity (veh/h) | 677 | 707 | 684 | 705 | 680 | 763 | | | | | | | | Control Delay (s) | 8.1 | 7.3 | 7.4 | 7.3 | 8.2 | 7.8 | | | | | | | | Approach Delay (s) | 7.8 | | 7.4 | | 8.2 | 7.8 | | | | | | | | Approach LOS | Α | | Α | | Α | Α | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Delay | | | 7.7 | | | | | | | | | | | HCM Level of Service | | | Α | | | | | | | | | | | Intersection Capacity Ut | ilization | | 26.3% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 17: Chateau Road & Old Mammoth Road Saturday Peak - Base 9/23/2010 | | ۶ | - | • | • | • | • | 4 | † | - | - | ţ | 4 | |--------------------------|-----------|------|-------|------|---------|----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | Ĭ | fa
fa | | ľ | ĵ» | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 35 | 15 | 10 | 5 | 10 | 25 | 10 | 235 | 5 | 45 | 280 | 70 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 39 | 17 | 11 | 6 | 11 | 28 | 11 | 261 | 6 | 50 | 311 | 78 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 1037 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 767 | 739 | 350 | 717 | 775 | 264 | 389 | | | 267 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 767 | 739 | 350 | 717 | 775 | 264 | 389 | | | 267 | | | | tC, single
(s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 87 | 95 | 98 | 98 | 96 | 96 | 99 | | | 96 | | | | cM capacity (veh/h) | 289 | 329 | 693 | 314 | 313 | 775 | 1170 | | | 1297 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 67 | 44 | 11 | 267 | 50 | 389 | | | | | | | | Volume Left | 39 | 6 | 11 | 0 | 50 | 0 | | | | | | | | Volume Right | 11 | 28 | 0 | 6 | 0 | 78 | | | | | | | | cSH | 331 | 499 | 1170 | 1700 | 1297 | 1700 | | | | | | | | Volume to Capacity | 0.20 | 0.09 | 0.01 | 0.16 | 0.04 | 0.23 | | | | | | | | Queue Length 95th (ft) | 19 | 7 | 1 | 0 | 3 | 0 | | | | | | | | Control Delay (s) | 18.6 | 12.9 | 8.1 | 0.0 | 7.9 | 0.0 | | | | | | | | Lane LOS | С | В | Α | | Α | | | | | | | | | Approach Delay (s) | 18.6 | 12.9 | 0.3 | | 0.9 | | | | | | | | | Approach LOS | С | В | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 2.8 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 42.3% | 10 | CU Leve | el of Se | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) | |----------------------------| | Mammoth Lakes (LSC#084870) | | LSC, Inc. | HCM Unsignalized Intersection Capacity Analysis Page 17 HCM Unsignalized Intersection Capacity Analysis 18: Old Mammoth Road & Minaret Road Saturday Peak - Base 9/23/2010 | | ۶ | → | • | • | ← | • | 4 | † | <i>></i> | > | ļ | 1 | |---|-----------|----------|-------|------|----------|-----------|------|------|-------------|-------------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ۲ | - 1→ | | ሻ | 4 | | | ર્ન | 7 | ٦ | f | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 90 | 140 | 10 | 30 | 160 | 60 | 5 | 15 | 20 | 65 | 35 | 130 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 100 | 156 | 11 | 33 | 178 | 67 | 6 | 17 | 22 | 72 | 39 | 144 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 244 | | | 167 | | | 769 | 672 | 161 | 653 | 644 | 21 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 244 | | | 167 | | | 769 | 672 | 161 | 653 | 644 | 21 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 92 | | | 98 | | | 98 | 95 | 97 | 78 | 89 | 83 | | cM capacity (veh/h) | 1322 | | | 1411 | | | 223 | 340 | 884 | 331 | 353 | 829 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | SB 2 | | | | | | | Volume Total | 100 | 167 | 33 | 244 | 44 | 72 | 183 | | | | | | | Volume Left | 100 | 0 | 33 | 0 | 6 | 72 | 0 | | | | | | | Volume Right | 0 | 11 | 0 | 67 | 22 | 0 | 144 | | | | | | | cSH | 1322 | 1700 | 1411 | 1700 | 622 | 331 | 645 | | | | | | | Volume to Capacity | 0.08 | 0.10 | 0.02 | 0.14 | 0.07 | 0.22 | 0.28 | | | | | | | Queue Length 95th (ft) | 6 | 0 | 2 | 0 | 6 | 20 | 29 | | | | | | | Control Delay (s) | 7.9 | 0.0 | 7.6 | 0.0 | 13.3 | 18.9 | 12.8 | | | | | | | Lane LOS | Α | | Α | | В | С | В | | | | | | | Approach Delay (s) | 3.0 | | 0.9 | | 13.3 | 14.5 | | | | | | | | Approach LOS | | | | | В | В | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 6.3 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 37.3% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Intersection Capacity Ut
Analysis Period (min) | ilization | | | Į(| CU Lev | el of Ser | vice | | | Α | A | А | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. ## Future Conditions (Base) LOS Reports HCM Unsignalized Intersection Capacity Analysis 1: Forest Trail & Minaret Road Saturday Peak - Future 10/12/2010 | | • | - | • | • | • | • | • | † | - | - | ţ | 4 | |-------------------------|------------|-------|-------|------|--------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 25 | 35 | 105 | 25 | 20 | 15 | 80 | 195 | 40 | 100 | 745 | 115 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 28 | 39 | 117 | 28 | 22 | 17 | 89 | 217 | 44 | 111 | 828 | 128 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1558 | 1553 | 892 | 1667 | 1594 | 239 | 956 | | | 261 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1558 | 1553 | 892 | 1667 | 1594 | 239 | 956 | | | 261 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 55 | 57 | 66 | 4 | 74 | 98 | 88 | | | 91 | | | | cM capacity (veh/h) | 61 | 91 | 341 | 29 | 86 | 800 | 719 | | | 1303 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 183 | 67 | 350 | 1067 | | | | | | | | | | Volume Left | 28 | 28 | 89 | 111 | | | | | | | | | | Volume Right | 117 | 17 | 44 | 128 | | | | | | | | | | cSH | 150 | 54 | 719 | 1303 | | | | | | | | | | Volume to Capacity | 1.22 | 1.24 | 0.12 | 0.09 | | | | | | | | | | Queue Length 95th (ft) | 266 | 147 | 11 | 7 | | | | | | | | | | Control Delay (s) | 205.3 | 327.9 | 3.9 | 2.2 | | | | | | | | | | Lane LOS | F | F | Α | Α | | | | | | | | | | Approach Delay (s) | 205.3 | 327.9 | 3.9 | 2.2 | | | | | | | | | | Approach LOS | F | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 37.9 | | | | | | | | | | | Intersection Capacity U | tilizatior | 1 | 73.9% | I I | CU Lev | el of Ser | vice | | D | | | | | Analysis Period (min) | | | 15 | HCM Unsignalized Intersection Capacity Analysis Page 1 HCM Unsignalized Intersection Capacity Analysis 2: Lake Mary Road & Davidson Saturday Peak - Future 10/12/2010 | | ၨ | → | • | • | ← | • | 4 | † | <i>></i> | - | ļ | 1 | |--------------------------|-----------|----------|-------|------|----------|-----------|------|----------|-------------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | | ર્ન | 7 | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 0 | 105 | 15 | 80 | 105 | 40 | 10 | 0 | 65 | 60 | 0 | 5 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 0 | 117 | 17 | 89 | 117 | 44 | 11 | 0 | 72 | 67 | 0 | 6 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 161 | | | 133 | | | 447 | 464 | 125 | 478 | 450 | 139 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 161 | | | 133 | | | 447 | 464 | 125 | 478 | 450 | 139 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 100 | | | 94 | | | 98 | 100 | 92 | 85 | 100 | 99 | | cM capacity (veh/h) | 1418 | | | 1451 | | | 494 | 465 | 926 | 437 | 474 | 909 | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 133 | 250 | 83 | 72 | | | | | | | | | | Volume Left | 0 | 89 | 11 | 67 | | | | | | | | | | Volume Right | 17 | 44 | 72 | 6 | | | | | | | | | | cSH | 1418 | 1451 | 1068 | 456 | | | | | | | | | | Volume to Capacity | 0.00 | 0.06 | 0.08 | 0.16 | | | | | | | | | | Queue Length 95th (ft) | 0 | 5 | 6 | 14 | | | | | | | | | | Control Delay (s) | 0.0 | 3.1 | 9.6 | 14.4 | | | | | | | | | | Lane LOS | | Α | Α | В | | | | | | | | | | Approach Delay (s) | 0.0 | 3.1 | 9.6 | 14.4 | | | | | | | | | | Approach LOS | | | Α | В | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 4.8 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 |
36.0% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 2 Mammoth Lakes (LSC#084870) LSC, Inc. (BP) LSC, Inc. HCM Signalized Intersection Capacity Analysis 3: Lake Mary Road & Canyon Boulevard Saturday Peak - Future 10/12/2010 | e. Lake Mary Head | | | | | | | | | |--------------------------|-----------|----------|----------|------|-----------|----------------|-----|--| | | ۶ | - | • | • | - | ✓ | | | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | Ť | ↑ | ↑ | 7 | ሻሻ | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 3431 | | | | | Flt Permitted | 0.59 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1092 | 1863 | 1863 | 1583 | 3431 | | | | | Volume (vph) | 25 | 220 | 255 | 235 | 495 | 15 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 28 | 244 | 283 | 261 | 550 | 17 | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 112 | 7 | 0 | | | | Lane Group Flow (vph) | 28 | 244 | 283 | 149 | 560 | 0 | | | | Turn Type | Perm | | | Perm | | | | | | Protected Phases | | 2 | 6 | | 4 | | | | | Permitted Phases | 2 | | | 6 | | | | | | Actuated Green, G (s) | 25.1 | 25.1 | 25.1 | 25.1 | 11.2 | | | | | Effective Green, q (s) | 25.7 | 25.7 | 25.7 | 25.7 | 11.3 | | | | | Actuated q/C Ratio | 0.57 | 0.57 | 0.57 | 0.57 | 0.25 | | | | | Clearance Time (s) | 4.6 | 4.6 | 4.6 | 4.6 | 4.1 | | | | | Vehicle Extension (s) | 6.1 | 6.1 | 6.1 | 6.1 | 2.0 | | | | | Lane Grp Cap (vph) | 624 | 1064 | 1064 | 904 | 862 | | | | | v/s Ratio Prot | | 0.13 | c0.15 | | c0.16 | | | | | v/s Ratio Perm | 0.03 | | | 0.09 | | | | | | v/c Ratio | 0.04 | 0.23 | 0.27 | 0.16 | 0.65 | | | | | Uniform Delay, d1 | 4.2 | 4.8 | 4.9 | 4.6 | 15.1 | | | | | Progression Factor | 1.00 | 1.00 | 0.41 | 0.61 | 1.00 | | | | | Incremental Delay, d2 | 0.1 | 0.5 | 0.4 | 0.3 | 1.3 | | | | | Delay (s) | 4.4 | 5.3 | 2.4 | 3.1 | 16.4 | | | | | Level of Service | Α | Α | Α | Α | В | | | | | Approach Delay (s) | | 5.2 | 2.7 | | 16.4 | | | | | Approach LOS | | Α | Α | | В | | | | | Intersection Summary | | | | | | | | | | HCM Average Control D | Delay | | 8.8 | H | ICM Lev | vel of Service | Α | | | HCM Volume to Capaci | ty ratio | | 0.38 | | | | | | | Actuated Cycle Length (| (s) | | 45.0 | 5 | Sum of Id | ost time (s) | 8.0 | | | Intersection Capacity Ut | ilization | | 42.0% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | | | | | | c Critical Lane Group | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 3 HCM Signalized Intersection Capacity Analysis 4: Lake Mary Road & Minaret Road Saturday Peak - Future 10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | / | / | ļ | 4 | |-------------------------|------------|----------|-------|-------|----------|----------|--------|----------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ^ | 7 | ሻ | ^ | 7 | ሻ | ↑ | 7 | ሻሻ | ₽ | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | | | Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3539 | 1583 | 1770 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1680 | | | Flt Permitted | 0.32 | 1.00 | 1.00 | 0.25 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 602 | 3539 | 1583 | 471 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1680 | | | Volume (vph) | 115 | 500 | 190 | 105 | 385 | 160 | 465 | 320 | 125 | 615 | 75 | 140 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 128 | 556 | 211 | 117 | 428 | 178 | 517 | 356 | 139 | 683 | 83 | 156 | | RTOR Reduction (vph) | 0 | 0 | 85 | 0 | 0 | 140 | 0 | 0 | 94 | 0 | 75 | 0 | | Lane Group Flow (vph) | 128 | 556 | 126 | 117 | 428 | 38 | 517 | 356 | 45 | 683 | 164 | 0 | | Turn Type | pm+pt | | Perm | pm+pt | | Perm | Split | | Perm | Split | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 8 | 8 | | 7 | 7 | | | Permitted Phases | 2 | | 2 | 6 | | 6 | | | 8 | | | | | Actuated Green, G (s) | 25.6 | 19.6 | 19.6 | 23.2 | 18.4 | 18.4 | 27.1 | 27.1 | 27.1 | 20.0 | 20.0 | | | Effective Green, g (s) | 26.6 | 20.5 | 20.5 | 24.2 | 19.3 | 19.3 | 28.0 | 28.0 | 28.0 | 20.6 | 20.6 | | | Actuated g/C Ratio | 0.30 | 0.23 | 0.23 | 0.27 | 0.21 | 0.21 | 0.31 | 0.31 | 0.31 | 0.23 | 0.23 | | | Clearance Time (s) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 2.5 | 4.7 | 4.7 | 2.5 | 4.6 | 4.6 | 5.2 | 5.2 | 5.2 | 6.2 | 6.2 | | | Lane Grp Cap (vph) | 257 | 806 | 361 | 197 | 759 | 339 | 551 | 580 | 492 | 786 | 385 | | | v/s Ratio Prot | c0.03 | c0.16 | | 0.03 | 0.12 | | c0.29 | 0.19 | | c0.20 | 0.10 | | | v/s Ratio Perm | 0.11 | | 0.08 | 0.13 | | 0.02 | | | 0.03 | | | | | v/c Ratio | 0.50 | 0.69 | 0.35 | 0.59 | 0.56 | 0.11 | 0.94 | 0.61 | 0.09 | 0.87 | 0.43 | | | Uniform Delay, d1 | 24.4 | 31.8 | 29.2 | 26.2 | 31.6 | 28.5 | 30.2 | 26.4 | 22.0 | 33.4 | 29.7 | | | Progression Factor | 0.85 | 0.86 | 0.85 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.0 | 4.3 | 2.4 | 4.0 | 3.0 | 0.7 | 25.8 | 4.8 | 0.4 | 12.5 | 3.4 | | | Delay (s) | 21.7 | 31.7 | 27.1 | 30.2 | 34.6 | 29.1 | 55.9 | 31.2 | 22.4 | 45.9 | 33.1 | | | Level of Service | С | С | С | С | С | С | Е | С | С | D | С | | | Approach Delay (s) | | 29.2 | | | 32.5 | | | 42.6 | | | 42.6 | | | Approach LOS | | С | | | С | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 37.2 | H | ICM Le | vel of S | ervice | | D | | | | | HCM Volume to Capaci | ity ratio | | 0.79 | | | | | | | | | | | Actuated Cycle Length | (s) | | 90.0 | 5 | Sum of I | ost time | (s) | | 12.0 | | | | | Intersection Capacity U | tilizatior | 1 | 71.3% | 10 | CU Leve | el of Se | rvice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 5: Main Street & Mountain Boulevard Saturday Peak - Future 10/12/2010 | | • | - | • | • | • | • | 1 | Ť | | - | ¥ | 4 | |--------------------------|-----------|------|-------|------|--------|-----------|------|------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 25 | 1115 | 60 | 25 | 520 | 75 | 10 | 20 | 15 | 50 | 15 | 50 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 28 | 1239 | 67 | 28 | 578 | 83 | 11 | 22 | 17 | 56 | 17 | 56 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 661 | | | 1306 | | | 1736 | 2044 | 653 | 1378 | 2036 | 331 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 661 | | | 1306 | | | 1736 | 2044 | 653 | 1378 | 2036 | 331 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 97 | | | 95 | | | 69 | 56 | 96 | 10 | 68 | 92 | | cM capacity (veh/h) | 923 | | | 526 | | | 36 | 51 | 410 | 62 | 52 | 665 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total | 647 | 686 | 317 | 372 | 50 | 128 | | | | | | | | Volume Left | 28 | 0 | 28 | 0 | 11 | 56 | | | | | | | | Volume Right | 0 | 67 | 0 | 83 | 17 | 56 | | | | | | | | cSH | 923 | 1700 | 526 | 1700 | 64 | 98 | | | | | | | | Volume to Capacity | 0.03 | 0.40 | 0.05 | 0.22 | 0.78 | 1.30 | | | | | | | | Queue Length 95th (ft) | 2 | 0 | 4 | 0 | 89 | 226 | | | | | | | | Control Delay (s) | 0.8 | 0.0 | 1.8 | 0.0 | 161.8 | 271.7 | | | | | | | | Lane LOS | Α | | Α | | F | F | | | | | | | | Approach Delay (s) | 0.4 | | 0.8 | | 161.8 | 271.7 | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 19.9 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 69.5% | I | CU Lev | el of Sei | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | - ` ' | | | | | | | | | | | | | HCM Unsignalized Intersection Capacity Analysis Page 5 HCM Unsignalized Intersection Capacity Analysis 6: Main Street & Center Street Saturday Peak - Future 10/12/2010 | | | • | • | | ` | -7 | - 1 | - 7 | 7 | * | * | |-----------
--|---|---|--|----------|----------|----------|--------------------|---|---|--| | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | J. | ↑ î> | | ľ | ↑ } | | | 4 | | | 4 | | | | Free | | | Free | | | Stop | | | Stop | | | | 0% | | | 0% | | | 0% | | | 0% | | | 55 | 790 | 110 | 50 | 535 | 55 | 50 | 10 | 110 | 40 | 0 | 30 | | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 61 | 878 | 122 | 56 | 594 | 61 | 56 | 11 | 122 | 44 | 0 | 33 | None | | | None | 1207 | 656 | | | 1000 | | | 1503 | 1828 | 500 | 1425 | 1858 | 328 | 656 | | | 1000 | | | 1503 | 1828 | 500 | 1425 | 1858 | 328 | | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | | | | | | | | | | | | | | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | 93 | | | 92 | | | 22 | 83 | 76 | 22 | 100 | 95 | | 928 | | | 688 | | | 71 | 65 | 516 | 57 | 62 | 668 | | EB 1 | EB 2 | EB 3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | 61 | 585 | 415 | 56 | 396 | 259 | 189 | 78 | | | | | | 61 | 0 | 0 | 56 | 0 | 0 | 56 | 44 | | | | | | 0 | 0 | 122 | 0 | 0 | 61 | 122 | 33 | | | | | | 928 | 1700 | 1700 | 688 | 1700 | 1700 | 159 | 94 | | | | | | 0.07 | 0.34 | 0.24 | 0.08 | 0.23 | 0.15 | 1.19 | 0.83 | | | | | | 5 | 0 | 0 | 7 | 0 | 0 | 263 | 113 | | | | | | 9.2 | 0.0 | 0.0 | 10.7 | 0.0 | 0.0 | 188.4 | 131.4 | | | | | | Α | | | В | | | F | F | | | | | | 0.5 | | | 0.8 | | | 188.4 | 131.4 | | | | | | | | | | | | F | F | 23.0 | | | | | | | | | | | ilization | | | 10 | CU Leve | el of Se | rvice | | Α | | | | | | | 15 | | | | | | | | | | | | 656
656
656
4.1
2.2
93
928
EB 1
61
61
0
928
0.07
5
9.2
A
0.5 | 656 656 656 4.1 2.2 93 928 EB 1 EB 2 61 585 61 0 0 0 928 1700 0.07 0.34 5 0 9.2 0.0 A 0.5 | 656 656 4.1 2.2 93 928 EB1 EB2 EB3 61 585 415 61 0 0 0 0 122 928 1700 1700 0.07 0.34 0.24 5 0 0 9.2 0.0 0.0 A 0.5 | Free 0% Free 0% 55 790 110 50 0.90 0.90 0.90 0.90 61 878 122 56 656 1000 4.1 4.1 2.2 2.2 93 92 928 688 EB 1 EB 2 EB 3 WB 1 61 585 415 56 61 0 0 56 0 0 122 0 928 1700 1700 688 0.07 0.34 0.24 0.08 5 0 0 7 9.2 0.0 0.0 10.7 A B 0.5 0.8 | The Free | The Free | The Free | Free Free Stop | Free Free Stop 0% 0% 0% 0% 0% 0% 0% 0 | Free Free Stop 0% 0% 0% 0% 0% 0% 0% 0 | Free Free Stop Stop O% O% O% O% O% O% O% O | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 6 Mammoth Lakes (LSC#084870) LSC, Inc. (BP) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 7: Main Street & Forest Trail Saturday Peak - Future 10/12/2010 | | • | - | • | • | - | • | 1 | † | - | / | ţ | 4 | |--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | J. | † } | | Ĭ | † } | | | 4 | | | ર્ન | 7 | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 15 | 995 | 15 | 15 | 610 | 80 | 15 | 0 | 20 | 170 | 5 | 40 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 17 | 1106 | 17 | 17 | 678 | 89 | 17 | 0 | 22 | 189 | 6 | 44 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | 1 | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 793 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 767 | | | 1122 | | | 1522 | 1947 | 561 | 1364 | 1911 | 383 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 767 | | | 1122 | | | 1522 | 1947 | 561 | 1364 | 1911 | 383 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 98 | | | 97 | | | 75 | 100 | 95 | 0 | 91 | 93 | | cM capacity (veh/h) | 843 | | | 618 | | | 68 | 61 | 471 | 98 | 64 | 615 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 17 | 737 | 385 | 17 | 452 | 315 | 39 | 239 | | | | | | Volume Left | 17 | 0 | 0 | 17 | 0 | 0 | 17 | 189 | | | | | | Volume Right | 0 | 0 | 17 | 0 | 0 | 89 | 22 | 44 | | | | | | cSH | 843 | 1700 | 1700 | 618 | 1700 | 1700 | 133 | 114 | | | | | | Volume to Capacity | 0.02 | 0.43 | 0.23 | 0.03 | 0.27 | 0.19 | 0.29 | 2.09 | | | | | | Queue Length 95th (ft) | 2 | 0 | 0.20 | 2 | 0.2. | 00 | 28 | 501 | | | | | | Control Delay (s) | 9.4 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 | 43.0 | 580.0 | | | | | | Lane LOS | A | 0.0 | 0.0 | В | 0.0 | 0.0 | E | F | | | | | | Approach Delay (s) | 0.1 | | | 0.2 | | | 43.0 | 580.0 | | | | | | Approach LOS | | | | | | | E | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 63.9 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 51.0% | I | CU Lev | el of Sei | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 7 HCM Unsignalized Intersection Capacity Analysis 8: Main Street & Laurel Mountain Road Saturday Peak - Future 10/12/2010 | | - | • | 1 | • | 1 | | | |--------------------------|-------------|------|-------|----------|--------|--------------|------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | † 1> | | ሻ | ^ | ¥ | | | | Sign Control | Free | | | Free | Stop | | | | Grade | 0% | | | 0% | 0% | | | | Volume (veh/h) | 965 | 200 | 25 | 625 | 115 | 35 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Hourly flow rate (vph) | 1072 | 222 | 28 | 694 | 128 | 39 | | | Pedestrians | | | | | | | | | Lane Width (ft) | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | Percent Blockage | | | | | | | | | Right turn flare (veh) | | | | | | | | | Median type | | | | | None | | | | Median storage veh) | | | | | | | | | Upstream signal (ft) | | | | 505 | | | | | pX, platoon unblocked | | | | | | | | | vC, conflicting volume | | | 1294 | | 1586 | 647 | | | vC1, stage 1 conf vol | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | vCu, unblocked vol | | | 1294 | | 1586 | 647 | | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | | tC, 2 stage (s) | | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | | p0 queue free % | | | 95 | | 0 | 91 | | | cM capacity (veh/h) | | | 531 | | 94 | 414 | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | WB 3 | NB 1 | | | Volume Total | 715 | 580 | 28 | 347 | 347 | 167 | | | Volume Left | 0 | 0 | 28 | 0 | 0 | 128 | | | Volume Right | 0 | 222 | 0 | 0 | 0 | 39 | | | cSH | 1700 | 1700 | 531 | 1700 | 1700 | 114 | | | Volume to Capacity | 0.42 | 0.34 | 0.05 | 0.20 | 0.20 | 1.46 | | | Queue Length 95th (ft) | 0 | 0 | 4 | 0 | 0 | 296 | | | Control Delay (s) | 0.0 | 0.0 | 12.1 | 0.0 | 0.0 | | | | Lane LOS | | | В | | | F | | | Approach Delay (s) | 0.0 | | 0.5 | | | 316.3 | | | Approach LOS | | | | | | F | | | Intersection Summary | | | | | | | | | Average Delay | | | 24.3 | | | | | | Intersection Capacity Ut | ilization | | 48.2% | - 1 | CU Lev | el of Servic | ce A | | Analysis Period (min) | | | 15 | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 9: Main Street & Old Mammoth Road Saturday Peak - Future 10/12/2010 | | → | • | • | • | 1 | <i>></i> | | |---|------------|-------|-------|----------|---------|----------------|---| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | ^ | 7 | ሻ | ^ | ሻ | 7 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | | Frt | 1.00 | 0.85 | 1.00 | 1.00 | 1.00 | 0.85 | | | Flt Protected | 1.00 | 1.00 | 0.95 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 3539 | 1583 | 1770 | 3539 | 1770 | 1583 | | | Flt Permitted | 1.00 | 1.00 | 0.40 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 3539 | 1583 | 752 | 3539 | 1770 | 1583 | | | Volume (vph) | 345 | 620 | 100 | 255 | 345 | 75 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 383 | 689 | 111 | 283 | 383 | 83 | | | RTOR Reduction (vph) | 0 | 477 | 0 | 0 | 0 | 50 | | | Lane Group Flow (vph) | 383 | 212 | 111 | 283 | 383 | 33 | | | Turn Type | | Perm | pm+pt | | | Perm | | | Protected Phases | 2 | |
1 | 6 | 3 | | | | Permitted Phases | | 2 | 6 | | | 3 | | | Actuated Green, G (s) | 16.7 | 16.7 | 25.3 | 25.3 | 22.4 | 22.4 | | | Effective Green, g (s) | 17.6 | 17.6 | 26.2 | 26.2 | 23.0 | 23.0 | | | Actuated g/C Ratio | 0.31 | 0.31 | 0.46 | 0.46 | 0.40 | 0.40 | | | Clearance Time (s) | 4.9 | 4.9 | 4.1 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 5.2 | 5.2 | 2.5 | 5.2 | 5.2 | 5.2 | | | Lane Grp Cap (vph) | 1089 | 487 | 426 | 1621 | 712 | 637 | | | v/s Ratio Prot | 0.11 | | c0.02 | 0.08 | c0.22 | | | | v/s Ratio Perm | | c0.13 | 0.10 | | | 0.02 | | | v/c Ratio | 0.35 | 0.44 | 0.26 | 0.17 | 0.54 | 0.05 | | | Uniform Delay, d1 | 15.4 | 15.8 | 9.2 | 9.1 | 13.0 | 10.4 | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.4 | 1.4 | 0.2 | 0.1 | 2.9 | 0.2 | | | Delay (s) | 15.8 | 17.2 | 9.4 | 9.2 | 15.9 | 10.6 | | | Level of Service | В | В | Α | Α | В | В | | | Approach Delay (s) | 16.7 | | | 9.3 | 15.0 | | | | Approach LOS | В | | | Α | В | | | | Intersection Summary | | | | | | | | | HCM Average Control [| | | 14.8 | H | ICM Le | vel of Service | е | | HCM Volume to Capaci | | | 0.47 | | | | | | Actuated Cycle Length | | | 57.2 | | | ost time (s) | | | Intersection Capacity U | tilization | | 50.6% | 10 | CU Leve | el of Service | | | Analysis Period (min) | | | 15 | | | | | | Critical Lane Group | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 9 HCM Unsignalized Intersection Capacity Analysis 10: Main Street & Sierra Park Boulevard Saturday Peak - Future 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | <i>></i> | - | ļ | 4 | |--------------------------|------------|------------|-------|------|------------|-----------|-------|----------|-------------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | , J | ↑ ↑ | | Ţ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 345 | 85 | 40 | 285 | 10 | 40 | 10 | 45 | 10 | 10 | 15 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 383 | 94 | 44 | 317 | 11 | 44 | 11 | 50 | 11 | 11 | 17 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | 544 | | | | | | | | | | | | pX, platoon unblocked | | | | 0.96 | | | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | vC, conflicting volume | 328 | | | 478 | | | 722 | 869 | 239 | 681 | 911 | 164 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 328 | | | 415 | | | 670 | 823 | 167 | 626 | 866 | 164 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 99 | | | 96 | | | 85 | 96 | 94 | 96 | 96 | 98 | | cM capacity (veh/h) | 1229 | | | 1095 | | | 301 | 280 | 815 | 310 | 264 | 852 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 11 | 256 | 222 | 44 | 211 | 117 | 106 | 39 | | | | | | Volume Left | 11 | 0 | 0 | 44 | 0 | 0 | 44 | 11 | | | | | | Volume Right | 0 | 0 | 94 | 0 | 0 | 11 | 50 | 17 | | | | | | cSH | 1229 | 1700 | 1700 | 1095 | 1700 | 1700 | 424 | 399 | | | | | | Volume to Capacity | 0.01 | 0.15 | 0.13 | 0.04 | 0.12 | 0.07 | 0.25 | 0.10 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 3 | 0 | 0 | 24 | 8 | | | | | | Control Delay (s) | 8.0 | 0.0 | 0.0 | 8.4 | 0.0 | 0.0 | 16.3 | 15.0 | | | | | | Lane LOS | Α | | | Α | | | С | В | | | | | | Approach Delay (s) | 0.2 | | | 1.0 | | | 16.3 | 15.0 | | | | | | Approach LOS | | | | | | | С | В | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 2.7 | | | | | | | | | | | Intersection Capacity Ut | tilization | | 34.2% | - 1 | CU Lev | el of Sei | rvice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 11: Tavern Road & Old Mammoth Road Saturday Peak - Future 10/12/2010 | | • | - | • | • | — | • | 4 | † | - | / | ↓ | 4 | |--------------------------|------------|------|-------|------|----------|-----------|------|----------|------|------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | J. | f) | | , J | 4î | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 5 | 40 | 5 | 5 | 25 | 45 | 450 | 10 | 15 | 790 | 40 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 6 | 44 | 6 | 6 | 28 | 50 | 500 | 11 | 17 | 878 | 44 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 760 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1564 | 1544 | 900 | 1564 | 1561 | 506 | 922 | | | 511 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1564 | 1544 | 900 | 1564 | 1561 | 506 | 922 | | | 511 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 71 | 95 | 87 | 92 | 95 | 95 | 93 | | | 98 | | | | cM capacity (veh/h) | 77 | 105 | 337 | 71 | 103 | 567 | 741 | | | 1054 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 72 | 39 | 50 | 511 | 17 | 922 | | | | | | | | Volume Left | 22 | 6 | 50 | 0 | 17 | 0 | | | | | | | | Volume Right | 44 | 28 | 0 | 11 | 0 | 44 | | | | | | | | cSH | 153 | 214 | 741 | 1700 | 1054 | 1700 | | | | | | | | Volume to Capacity | 0.47 | 0.18 | 0.07 | 0.30 | 0.02 | 0.54 | | | | | | | | Queue Length 95th (ft) | 55 | 16 | 5 | 0 | 1 | 0 | | | | | | | | Control Delay (s) | 47.9 | 25.5 | 10.2 | 0.0 | 8.5 | 0.0 | | | | | | | | Lane LOS | Е | D | В | | Α | | | | | | | | | Approach Delay (s) | 47.9 | 25.5 | 0.9 | | 0.2 | | | | | | | | | Approach LOS | Е | D | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 3.2 | | | | | | | | | | | Intersection Capacity Ut | tilizatior | 1 | 57.9% | 10 | CU Lev | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | HCM Unsignalized Intersection Capacity Analysis Page 11 HCM Unsignalized Intersection Capacity Analysis 12: Sierra Nevada Road & Old Mammoth Road Saturday Peak - Future 10/12/2010 | | ۶ | - | • | • | • | • | • | † | ~ | - | ţ | 4 | |-------------------------|------------|-------|-------|------|---------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ቆ | | | 4 | | ሻ | î, | | ሻ | Դ | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 15 | 85 | 20 | 20 | 35 | 75 | 480 | 5 | 50 | 715 | 50 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 17 | 94 | 22 | 22 | 39 | 83 | 533 | 6 | 56 | 794 | 56 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | 773 | | | | | | pX, platoon unblocked | 0.95 | 0.95 | | 0.95 | 0.95 | 0.95 | | | | 0.95 | | | | vC, conflicting volume | 1683 | 1639 | 822 | 1711 | 1664 | 536 | 850 | | | 539 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1718 | 1672 | 822 | 1748 | 1698 | 512 | 850 | | | 515 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 48 | 78 | 75 | 37 | 70 | 93 | 89 | | | 94 | | | | cM capacity (veh/h) | 42 | 77 | 374 | 35 | 74 | 534 | 788 | | | 999 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 133 | 83 | 83 | 539 | 56 | 850 | | | | | | | | Volume Left | 22 | 22 | 83 | 0 | 56 | 0 | | | | | | | | Volume Right | 94 | 39 | 0 | 6 | 0 | 56 | | | | | | | | cSH | 134 | 83 | 788 | 1700 | 999 | 1700 | | | | | | | | Volume to Capacity | 0.99 | 1.00 | 0.11 | 0.32 | 0.06 | 0.50 | | | | | | | | Queue Length 95th (ft) | 175 | 140 | 9 | 0 | 4 | 0 | | | | | | | | Control Delay (s) | 139.7 | 188.4 | 10.1 | 0.0 | 8.8 | 0.0 | | | | | | | | Lane LOS | F | F | В | | Α | | | | | | | | | Approach Delay (s) | 139.7 | 188.4 | 1.4 | | 0.5 | | | | | | | | | Approach LOS | F | F | | | | | | | | |
| | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 20.4 | | | | | | | | | | | Intersection Capacity U | tilization | 1 | 63.2% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | , | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 12 LSC, Inc. (BP) LSC, Inc. Mammoth Lakes (LSC#084870) HCM Unsignalized Intersection Capacity Analysis 13: Meridian Boulevard & Majestic Pines Drive Saturday Peak - Future 10/12/2010 | To: Michalan Boalov | | | | | | | | |--------------------------|-----------|------|----------|------|---------|-----------|--------| | | ۶ | - | ← | • | - | 4 | | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | | 41₽ | † | | ¥ | | | | Sign Control | | Free | Free | | Stop | | | | Grade | | 0% | 0% | | 0% | | | | Volume (veh/h) | 60 | 455 | 225 | 70 | 50 | 35 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Hourly flow rate (vph) | 67 | 506 | 250 | 78 | 56 | 39 | | | Pedestrians | | | | | | | | | Lane Width (ft) | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | Percent Blockage | | | | | | | | | Right turn flare (veh) | | | | | | | | | Median type | | | | | None | | | | Median storage veh) | | | | | | | | | Upstream signal (ft) | | | | | | | | | pX, platoon unblocked | | | | | | | | | vC, conflicting volume | 328 | | | | 675 | 164 | | | vC1, stage 1 conf vol | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | vCu, unblocked vol | 328 | | | | 675 | 164 | | | tC, single (s) | 4.1 | | | | 6.8 | 6.9 | | | tC, 2 stage (s) | | | | | | | | | tF (s) | 2.2 | | | | 3.5 | 3.3 | | | p0 queue free % | 95 | | | | 85 | 95 | | | cM capacity (veh/h) | 1229 | | | | 366 | 852 | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | SB 1 | | | | Volume Total | 235 | 337 | 167 | 161 | 94 | | | | Volume Left | 67 | 0 | 0 | 0 | 56 | | | | Volume Right | 0 | 0 | 0 | 78 | 39 | | | | cSH | 1229 | 1700 | 1700 | 1700 | 479 | | | | Volume to Capacity | 0.05 | 0.20 | 0.10 | 0.09 | 0.20 | | | | Queue Length 95th (ft) | 4 | 0 | 0 | 0 | 18 | | | | Control Delay (s) | 2.6 | 0.0 | 0.0 | 0.0 | 14.4 | | | | Lane LOS | Α | | | | В | | | | Approach Delay (s) | 1.1 | | 0.0 | | 14.4 | | | | Approach LOS | | | | | В | | | | Intersection Summary | | | | | | | | | Average Delay | | | 2.0 | | | | | | Intersection Capacity Ut | ilization | | 37.7% | 10 | CU Leve | el of Ser | vice A | 15 LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. Analysis Period (min) HCM Unsignalized Intersection Capacity Analysis Page 13 HCM Signalized Intersection Capacity Analysis 14: Meridian Boulevard & Minaret Road Saturday Peak - Future 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | ~ | / | ļ | 4 | |-------------------------|------------|------------|-------|-------|------------|-----------|--------|------|------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ↑ ↑ | | ሻ | ĵ» | | ٦ | î» | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.96 | | 1.00 | 0.94 | | 1.00 | 0.98 | | 1.00 | 0.98 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3415 | | 1770 | 3309 | | 1770 | 1826 | | 1770 | 1819 | | | Flt Permitted | 0.33 | 1.00 | | 0.38 | 1.00 | | 0.31 | 1.00 | | 0.41 | 1.00 | | | Satd. Flow (perm) | 609 | 3415 | | 714 | 3309 | | 570 | 1826 | | 765 | 1819 | | | Volume (vph) | 150 | 345 | 105 | 35 | 210 | 160 | 60 | 195 | 30 | 345 | 480 | 90 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 167 | 383 | 117 | 39 | 233 | 178 | 67 | 217 | 33 | 383 | 533 | 100 | | RTOR Reduction (vph) | 0 | 31 | 0 | 0 | 139 | 0 | 0 | 6 | 0 | 0 | 8 | 0 | | Lane Group Flow (vph) | 167 | 469 | 0 | 39 | 272 | 0 | 67 | 244 | 0 | 383 | 625 | 0 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | | pm+pt | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 24.5 | 18.7 | | 18.9 | 15.9 | | 25.3 | 22.3 | | 41.6 | 34.5 | | | Effective Green, q (s) | 25.5 | 19.6 | | 19.9 | 16.8 | | 26.3 | 23.2 | | 42.5 | 35.4 | | | Actuated g/C Ratio | 0.33 | 0.25 | | 0.26 | 0.22 | | 0.34 | 0.30 | | 0.55 | 0.46 | | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | | Vehicle Extension (s) | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | | Lane Grp Cap (vph) | 290 | 867 | | 226 | 720 | | 242 | 549 | | 620 | 834 | | | v/s Ratio Prot | c0.04 | 0.14 | | 0.01 | 0.08 | | 0.01 | 0.13 | | c0.12 | c0.34 | | | v/s Ratio Perm | c0.15 | | | 0.04 | | | 0.08 | | | 0.22 | | | | v/c Ratio | 0.58 | 0.54 | | 0.17 | 0.38 | | 0.28 | 0.45 | | 0.62 | 0.75 | | | Uniform Delay, d1 | 19.5 | 24.9 | | 21.8 | 25.7 | | 17.7 | 21.8 | | 10.7 | 17.2 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.3 | 1.2 | | 0.3 | 0.7 | | 0.5 | 1.2 | | 1.6 | 4.5 | | | Delay (s) | 21.8 | 26.1 | | 22.1 | 26.4 | | 18.2 | 23.0 | | 12.3 | 21.7 | | | Level of Service | С | С | | С | С | | В | С | | В | С | | | Approach Delay (s) | | 25.0 | | | 26.1 | | | 22.0 | | | 18.2 | | | Approach LOS | | С | | | С | | | С | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control I | Delay | | 22.0 | H | ICM Lev | el of Se | ervice | | С | | | | | HCM Volume to Capac | | | 0.72 | | | | | | | | | | | Actuated Cycle Length | | | 77.2 | S | Sum of lo | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | | 68.3% | 10 | CU Leve | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 15: Meridian Boulevard & Old Mammoth Road Saturday Peak - Future 10/12/2010 | Movement | | • | - | • | • | • | • | 1 | Ť | _ | - | ¥ | 4 | |--|---|------------|------------|------|-------|--------|-----------|--------|---------|------|-------|---------|------| | Ideal Flow (vphpl) | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Total Lost time (s) | Lane Configurations | ٦ | † } | | ሻ | ħβ | | ሻ | <u></u> | 7 | ሻ | <u></u> | 7 | | Lane Util. Factor | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Fit Protected 0.95 1.00 0.98 1.00 0.97 1.00 1.00 0.85 1.00 1.00 0.85 Fit Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.94 1.00 0.95 1.00 1.00
0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Fit Protected | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Satd. Flow (prot) 1770 3456 1770 3445 1770 1863 1583 1770 1863 1583 Flt Permitted 0.34 1.00 0.16 1.00 0.25 1.00 1.00 0.44 1.00 1.00 Satd. Flow (perm) 632 3456 307 3445 463 1863 1583 811 1863 1583 Volume (vph) 190 695 130 110 370 80 150 265 55 130 360 65 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9 | Frt | 1.00 | 0.98 | | 1.00 | 0.97 | | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | | Fit Permitted 0.34 1.00 0.16 1.00 0.25 1.00 1.00 0.44 1.00 1.00 Satd. Flow (perm) 632 3456 307 3445 463 1863 1863 1883 811 1863 1583 Volume (vph) 190 695 130 110 370 80 150 265 55 130 360 65 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9 | Flt Protected | 0.95 | | | | 1.00 | | | | | | | | | Satd. Flow (perm) 632 3456 307 3445 463 1863 1583 811 1863 1583 | | | | | | | | | | | 1770 | | | | Volume (vph) 190 695 130 110 370 80 150 265 55 130 360 65 Peak-hour factor, PHF 0.90 28 1.8 1.8 1.4 4.00 22 1.0 1.1 1.1 1.1 1.1 1.1 1.1 </td <td>Flt Permitted</td> <td></td> <td>1.00</td> <td></td> <td></td> <td></td> <td></td> <td>0.25</td> <td>1.00</td> <td></td> <td>0.44</td> <td></td> <td></td> | Flt Permitted | | 1.00 | | | | | 0.25 | 1.00 | | 0.44 | | | | Peak-hour factor, PHF | Satd. Flow (perm) | 632 | 3456 | | 307 | 3445 | | 463 | 1863 | 1583 | 811 | 1863 | 1583 | | Adj. Flow (vph) 211 772 144 122 411 89 167 294 61 144 400 72 RTOR Reduction (vph) 0 17 0 0 20 0 0 0 43 0 0 50 Lane Group Flow (vph) 211 899 0 122 480 0 167 294 18 144 400 22 Turn Type pm+pt pm+pt pm+pt pm+pt pm+pt Perm < | Volume (vph) | 190 | 695 | 130 | 110 | 370 | 80 | 150 | 265 | 55 | 130 | 360 | 65 | | RTOR Reduction (vph) 0 17 0 0 20 0 0 0 43 0 0 50 Lane Group Flow (vph) 211 899 0 122 480 0 167 294 18 144 400 22 Turn Type pm+pt pm+pt pm+pt pm+pt pm+pt Protected Phases 5 2 1 6 3 8 7 4 Permitted Phases 2 6 8 8 8 4 4 4 Actuated Green, G (s) 33.8 25.9 28.8 23.4 27.7 22.2 22.2 26.1 21.4 21.4 Effective Green, g (s) 34.8 26.8 29.8 24.3 28.7 23.1 23.1 27.1 22.3 22.3 Actuated g/C Ratio 0.46 0.35 0.39 0.32 0.38 0.30 0.30 0.36 0.29 0.29 Clearance Time (s) 4.1 4.9 4.1 4.9 4.1 4.9 4.9 4.1 4.9 4.9 4.1 4.9 4.9 Vehicle Extension (s) 2.5 3.7 2.5 3.8 2.5 3.8 3.8 2.5 3.8 3.8 Lane Grp Cap (vph) 408 1215 226 1099 270 565 480 349 545 463 v/s Ratio Port | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Lane Group Flow (vph) | Adj. Flow (vph) | 211 | 772 | 144 | 122 | 411 | 89 | 167 | 294 | 61 | 144 | 400 | 72 | | Turn Type | RTOR Reduction (vph) | 0 | 17 | 0 | 0 | 20 | 0 | 0 | 0 | 43 | 0 | 0 | 50 | | Protected Phases 5 | Lane Group Flow (vph) | 211 | 899 | 0 | 122 | 480 | 0 | 167 | 294 | 18 | 144 | 400 | 22 | | Permitted Phases 2 | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | Perm | pm+pt | | Perm | | Actuated Green, G (s) 33.8 25.9 28.8 23.4 27.7 22.2 22.2 26.1 21.4 21.4 Effective Green, g (s) 34.8 26.8 29.8 24.3 28.7 23.1 23.1 27.1 22.3 22.3 Actuated g/C Ratio 0.46 0.35 0.39 0.32 0.38 0.30 0.30 0.36 0.29 0.29 Clearance Time (s) 4.1 4.9 4.1 4.9 4.1 4.9 4.9 4.1 4.9 4.9 Vehicle Extension (s) 2.5 3.7 2.5 3.8 2.5 3.8 3.8 2.5 3.8 3.8 2.5 3.8 3.8 Lane Grp Cap (vph) 408 1215 226 1099 270 565 480 349 545 463 v/s Ratio Prot c0.05 c0.26 0.04 0.14 c0.05 0.16 0.03 c0.21 v/s Ratio Perm 0.18 0.17 0.19 0.01 0.12 0.01 v/c Ratio 0.52 0.74 0.54 0.44 0.62 0.52 0.04 0.41 0.73 0.05 Uniform Delay, d1 13.2 21.6 16.3 20.5 17.5 22.0 18.7 17.5 24.3 19.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Effective Green, g (s) 34.8 26.8 29.8 24.3 28.7 23.1 23.1 27.1 22.3 22.3 Actuated g/C Ratio 0.46 0.35 0.39 0.32 0.38 0.30 0.30 0.36 0.29 0.29 Clearance Time (s) 4.1 4.9 4.1 4 | Permitted Phases | 2 | | | 6 | | | 8 | | 8 | 4 | | 4 | | Actuated g/C Ratio 0.46 0.35 0.39 0.32 0.38 0.30 0.30 0.36 0.29 0.29 Clearance Time (s) 4.1 4.9 4.9 4.1 4.9 4.9 4.1 4.9 4.1 4.9 4.1 4.9 4.9 4.1 4.1 4.9 4.9 4.1 4.1 4.9 4.9 4.1 4.1 4.9 4.9 4.1 4.1 4.9 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.9 4.1 4.1 4.1 4.0 0.0 5.0 1.00 0.00 0.00 0.00 0.00 0.00 | Actuated Green, G (s) | 33.8 | 25.9 | | 28.8 | 23.4 | | 27.7 | 22.2 | 22.2 | 26.1 | 21.4 | 21.4 | | Clearance Time (s) | Effective Green, g (s) | 34.8 | 26.8 | | 29.8 | 24.3 | | 28.7 | 23.1 | 23.1 | 27.1 | 22.3 | 22.3 | | Vehicle Extension (s) 2.5 3.7 2.5 3.8 2.5 3.8 3.8 2.5 3.8 3.8 3.8 2.5 3.8 4.5 463 463 448 610 3.6 463 405 515 480 349 545 463 463 405 515 40.0 100 | Actuated g/C Ratio | 0.46 | 0.35 | | 0.39 | 0.32 | | 0.38 | 0.30 | 0.30 | 0.36 | 0.29 | 0.29 | | Lane Grp Cap (vph) | Clearance Time (s) | | 4.9 | | | 4.9 | | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | | v/s Ratio Prot c0.05 c0.26 0.04 0.14 c0.05 0.16 0.03 c0.21 v/s Ratio Perm 0.18 0.17 0.19 0.01 0.12 0.01 v/s Ratio Perm 0.18 0.17 0.19 0.01 0.12 0.01 v/s Ratio Perm 0.18 0.17 0.19 0.01 0.01 0.12 0.01 v/s Ratio Perm 0.18 0.74 0.54 0.44 0.62 0.52 0.04 0.41 0.73 0.05 Uniform Delay, d1 13.2 21.6 16.3 20.5 17.5 22.0 18.7 17.5 24.3 19.3 Progression Factor 1.00 1. | Vehicle Extension (s) | 2.5 | 3.7 | | 2.5 | 3.8 | | 2.5 | 3.8 | 3.8 | 2.5 | 3.8 | 3.8 | | v/s Ratio Perm 0.18 0.17 0.19 0.01 0.12 0.01 v/c Ratio 0.52 0.74 0.54 0.44 0.62 0.52 0.04 0.41 0.73 0.05 Uniform Delay, d1 13.2 21.6 16.3 20.5 17.5 22.0 18.7 17.5 24.3 19.3 Progression Factor 1.00 | Lane Grp Cap (vph) | 408 | 1215 | | 226 | 1099 | | 270 | 565 | 480 | 349 | 545 | 463 | | v/c Ratio 0.52 0.74 0.54 0.44 0.62 0.52 0.04 0.41 0.73 0.05 Uniform Delay, d1 13.2 21.6 16.3 20.5 17.5 22.0 18.7 17.5 24.3 19.3 Progression Factor 1.00
1.00 | v/s Ratio Prot | c0.05 | c0.26 | | 0.04 | 0.14 | | c0.05 | 0.16 | | 0.03 | c0.21 | | | Uniform Delay, d1 13.2 21.6 16.3 20.5 17.5 22.0 18.7 17.5 24.3 19.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | v/s Ratio Perm | 0.18 | | | 0.17 | | | 0.19 | | 0.01 | 0.12 | | 0.01 | | Progression Factor 1.00 | v/c Ratio | 0.52 | 0.74 | | 0.54 | 0.44 | | 0.62 | 0.52 | 0.04 | 0.41 | 0.73 | 0.05 | | Incremental Delay, d2 | Uniform Delay, d1 | 13.2 | 21.6 | | 16.3 | 20.5 | | 17.5 | 22.0 | 18.7 | 17.5 | 24.3 | 19.3 | | Delay (s) | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Level of Service | Incremental Delay, d2 | | 2.6 | | | | | 3.6 | 1.1 | | | | | | Approach Delay (s) 22.3 20.4 21.9 25.7 Approach LOS C C C Intersection Summary HCM Average Control Delay 22.6 HCM Level of Service C HCM Volume to Capacity ratio 0.73 Actuated Cycle Length (s) 76.2 Sum of lost time (s) 16.0 Intersection Capacity Utilization 70.0% ICU Level of Service C Analysis Period (min) 15 | Delay (s) | 14.1 | | | 18.2 | | | | | 18.8 | 18.0 | 29.6 | 19.4 | | Approach LOS C C C C Intersection Summary HCM Average Control Delay 22.6 HCM Level of Service C HCM Volume to Capacity ratio 0.73 Actuated Cycle Length (s) 76.2 Sum of lost time (s) 16.0 Intersection Capacity Utilization 70.0% ICU Level of Service C Analysis Period (min) 15 | Level of Service | В | С | | В | С | | С | | В | В | С | В | | Intersection Summary HCM Average Control Delay 22.6 HCM Level of Service C HCM Volume to Capacity ratio 0.73 Actuated Cycle Length (s) 76.2 Sum of lost time (s) 16.0 Intersection Capacity Utilization 70.0% ICU Level of Service C Analysis Period (min) 15 | Approach Delay (s) | | 22.3 | | | 20.4 | | | 21.9 | | | 25.7 | | | HCM Average Control Delay 22.6 HCM Level of Service C HCM Volume to Capacity ratio 0.73 Cutuated Cycle Length (s) 76.2 Sum of lost time (s) 16.0 Intersection Capacity Utilization 70.0% ICU Level of Service C Analysis Period (min) 15 | Approach LOS | | С | | | С | | | С | | | С | | | HCM Volume to Capacity ratio 0.73 Actuated Cycle Length (s) 76.2 Sum of lost time (s) 16.0 Intersection Capacity Utilization 70.0% ICU Level of Service C Analysis Period (min) 15 | | | | | | | | | | | | | | | Actuated Cycle Length (s) 76.2 Sum of lost time (s) 16.0 Intersection Capacity Utilization 70.0% ICU Level of Service C Analysis Period (min) 15 | | | | | H | ICM Le | vel of Se | ervice | | С | | | | | Intersection Capacity Utilization 70.0% ICU Level of Service C Analysis Period (min) 15 | | | | | | | | | | | | | | | Analysis Period (min) 15 | Actuated Cycle Length | (s) | | | | | | | | 16.0 | | | | | | | tilization | | | 10 | CU Lev | el of Sei | vice | | С | | | | | c Critical Lane Group | | | | 15 | | | | | | | | | | | | Critical Lane Group | | | | | | | | | | | | | | LSC, Inc. (BP) | | |----------------------------|--| | Mammoth Lakes (LSC#084870) | | | LSC, Inc. | | HCM Signalized Intersection Capacity Analysis Page 15 HCM Unsignalized Intersection Capacity Analysis 16: Meridian Boulevard & Sierra Park Road Saturday Peak - Future 10/12/2010 | | ۶ | → | • | • | • | • | 4 | † | ~ | - | ↓ | 4 | |--------------------------|-----------|----------|-------|-------|---------|-----------|------|----------|------|------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | र्सी | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Stop | | | Stop | | | Volume (vph) | 50 | 160 | 5 | 5 | 155 | 15 | 25 | 5 | 5 | 15 | 5 | 80 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 56 | 178 | 6 | 6 | 172 | 17 | 28 | 6 | 6 | 17 | 6 | 89 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total (vph) | 144 | 94 | 92 | 103 | 39 | 111 | | | | | | | | Volume Left (vph) | 56 | 0 | 6 | 0 | 28 | 17 | | | | | | | | Volume Right (vph) | 0 | 6 | 0 | 17 | 6 | 89 | | | | | | | | Hadj (s) | 0.23 | -0.01 | 0.06 | -0.08 | 0.09 | -0.42 | | | | | | | | Departure Headway (s) | 5.3 | 5.1 | 5.2 | 5.0 | 5.1 | 4.5 | | | | | | | | Degree Utilization, x | 0.21 | 0.13 | 0.13 | 0.14 | 0.06 | 0.14 | | | | | | | | Capacity (veh/h) | 651 | 685 | 665 | 687 | 642 | 729 | | | | | | | | Control Delay (s) | 8.5 | 7.6 | 7.8 | 7.7 | 8.4 | 8.3 | | | | | | | | Approach Delay (s) | 8.2 | | 7.7 | | 8.4 | 8.3 | | | | | | | | Approach LOS | Α | | Α | | Α | Α | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Delay | | | 8.1 | | | | | | | | | | | HCM Level of Service | | | Α | | | | | | | | | | | Intersection Capacity Ut | ilization | | 27.7% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 17: Chateau Road & Old Mammoth Road Saturday Peak - Future 10/12/2010 | | • | - | • | • | • | • | 4 | † | - | - | ţ | 4 | |--------------------------|------------|------|-------|------|--------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | J. | f) | | J. | î» | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 35 | 35 | 15 | 10 | 20 | 60 | 15 | 340 | 10 | 110 | 405 | 85 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 39 | 39 | 17 | 11 | 22 | 67 | 17 | 378 | 11 | 122 | 450 | 94 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 1037 | | | pX, platoon unblocked | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | | 0.93 | | | | | | | vC, conflicting volume | 1231 | 1164 | 497 | 1147 | 1206 | 383 | 544 | | | 389 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1249 | 1177 | 458 | 1159 | 1222 | 383 | 509 | | | 389 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 61 | 75 | 97 | 90 | 85 | 90 | 98 | | | 90 | | | | cM capacity (veh/h) | 101 | 156 | 559 | 115 | 147 | 664 | 980 | | | 1170 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 94 | 100 | 17 | 389 | 122 | 544 | | | | | | | | Volume Left | 39 | 11 | 17 | 0 | 122 | 0 | | | | | | | | Volume Right | 17 | 67 | 0 | 11 | 0 | 94 | | | | | | | | cSH | 142 | 287 | 980 | 1700 | 1170 | 1700 | | | | | | | | Volume to Capacity | 0.67 | 0.35 | 0.02 | 0.23 | 0.10 | 0.32 | | | | | | | | Queue Length 95th (ft) | 92 | 38 | 1 | 0 | 9 | 0 | | | | | | | | Control Delay (s) | 70.3 | 24.1 | 8.7 | 0.0 | 8.4 | 0.0 | | | | | | | | Lane LOS | F | С | Α | | Α | | | | | | | | | Approach Delay (s) | 70.3 | 24.1 | 0.4 | | 1.5 | | | | | | | | | Approach LOS | F | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 8.1 | | | | | | | | | | | Intersection Capacity Ut | tilizatior | 1 | 51.2% | 10 | CU Lev | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 17 HCM Unsignalized Intersection Capacity Analysis 18: Old Mammoth Road & Minaret Road Saturday Peak - Future 10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | / | > | ļ | 4 | |--------------------------|-----------|------|--------|------|----------|----------|-------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | 1> | | ሻ | î, | | | ર્ન | 7 | ٦
 4î | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 115 | 190 | 55 | 170 | 220 | 105 | 30 | 85 | 115 | 115 | 200 | 215 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 128 | 211 | 61 | 189 | 244 | 117 | 33 | 94 | 128 | 128 | 222 | 239 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 361 | | | 272 | | | 1469 | 1236 | 242 | 1258 | 1208 | 303 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 361 | | | 272 | | | 1469 | 1236 | 242 | 1258 | 1208 | 303 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 89 | | | 85 | | | 0 | 30 | 84 | 0 | 0 | 68 | | cM capacity (veh/h) | 1198 | | | 1291 | | | 0 | 134 | 797 | 45 | 140 | 737 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | SB 2 | | | | | | | Volume Total | 128 | 272 | 189 | 361 | 256 | 128 | 461 | | | | | | | Volume Left | 128 | 0 | 189 | 0 | 33 | 128 | 0 | | | | | | | Volume Right | 0 | 61 | 0 | 117 | 128 | 0 | 239 | | | | | | | cSH | 1198 | 1700 | 1291 | 1700 | 40 | 45 | 241 | | | | | | | Volume to Capacity | 0.11 | 0.16 | 0.15 | 0.21 | 6.44 | 2.85 | 1.92 | | | | | | | Queue Length 95th (ft) | 9 | 0 | 13 | 0 | Err | 346 | 821 | | | | | | | Control Delay (s) | 8.4 | 0.0 | 8.3 | 0.0 | Err | 1024.7 | 461.9 | | | | | | | Lane LOS | Α | | Α | | F | F | F | | | | | | | Approach Delay (s) | 2.7 | | 2.8 | | Err | 584.0 | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 1617.1 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 65.1% | 10 | CU Lev | el of Se | rvice | | С | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. ## Future - Alternative 1 LOS Reports HCM Unsignalized Intersection Capacity Analysis 1: Forest Trail & Minaret Road Saturday Peak - Alternative 1 10/12/2010 | | • | - | • | • | • | • | 4 | † | - | - | ţ | 4 | |-------------------------|------------|-------|-------|------|--------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 30 | 100 | 20 | 15 | 10 | 75 | 195 | 30 | 80 | 745 | 110 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 33 | 111 | 22 | 17 | 11 | 83 | 217 | 33 | 89 | 828 | 122 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1486 | 1483 | 889 | 1594 | 1528 | 233 | 950 | | | 250 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1486 | 1483 | 889 | 1594 | 1528 | 233 | 950 | | | 250 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 71 | 68 | 68 | 42 | 83 | 99 | 88 | | | 93 | | | | cM capacity (veh/h) | 76 | 103 | 342 | 38 | 97 | 806 | 723 | | | 1316 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 167 | 50 | 333 | 1039 | | | | | | | | | | Volume Left | 22 | 22 | 83 | 89 | | | | | | | | | | Volume Right | 111 | 11 | 33 | 122 | | | | | | | | | | cSH | 177 | 65 | 723 | 1316 | | | | | | | | | | Volume to Capacity | 0.94 | 0.77 | 0.12 | 0.07 | | | | | | | | | | Queue Length 95th (ft) | 182 | 87 | 10 | 5 | | | | | | | | | | Control Delay (s) | 105.2 | 156.4 | 3.7 | 1.8 | | | | | | | | | | Lane LOS | F | F | Α | Α | | | | | | | | | | Approach Delay (s) | 105.2 | 156.4 | 3.7 | 1.8 | | | | | | | | | | Approach LOS | F | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 17.9 | | | | | | | | | | | Intersection Capacity U | tilizatior | 1 | 70.3% | 10 | CU Lev | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 1 HCM Unsignalized Intersection Capacity Analysis 2: Lake Mary Road & Davidson Saturday Peak - Alternative 1 10/12/2010 | | ۶ | - | • | • | ← | • | 1 | † | / | - | ļ | 4 | |--------------------------|-----------|------|-------|-----------|----------|-----------|------|----------|------|------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | | ₩ | | | 4 | | | ર્ન | 7 | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 0 | 105 | 15 | 80 | 105 | 40 | 10 | 0 | 65 | 60 | 0 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 0 | 117 | 17 | 89 | 117 | 44 | 11 | 0 | 72 | 67 | 0 | | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 161 | | | 133 | | | 447 | 464 | 125 | 478 | 450 | 13 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 161 | | | 133 | | | 447 | 464 | 125 | 478 | 450 | 13 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6. | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | p0 queue free % | 100 | | | 94 | | | 98 | 100 | 92 | 85 | 100 | 9 | | cM capacity (veh/h) | 1418 | | | 1451 | | | 494 | 465 | 926 | 437 | 474 | 90 | | Direction. Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 133 | 250 | 83 | 72 | | | | | | | | | | Volume Left | 0 | 89 | 11 | 67 | | | | | | | | | | Volume Right | 17 | 44 | 72 | 6 | | | | | | | | | | cSH | 1418 | 1451 | 1068 | 456 | Volume to Capacity | 0.00 | 0.06 | 0.08 | 0.16 | | | | | | | | | | Queue Length 95th (ft) | 0 | 5 | 6 | 14 | | | | | | | | | | Control Delay (s) | 0.0 | 3.1 | 9.6 | 14.4 | | | | | | | | | | Lane LOS | 0.0 | A | A | B
14.4 | | | | | | | | | | Approach Delay (s) | 0.0 | 3.1 | 9.6 | | | | | | | | | | | Approach LOS | | | Α | В | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 4.8 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 36.0% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 3: Lake Mary Road & Canyon Boulevard | e. Lake Mary Head | | | | - | | | | | |--------------------------|------------|----------|----------|------|-----------|---------------|-----|--| | | • | - | • | • | - | 4 | | | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | Ť | † | ^ | 7 | ሻሻ | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 3432 | | | | | Flt Permitted | 0.59 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1097 | 1863 | 1863 | 1583 | 3432 | | | | | Volume (vph) | 20 | 215 | 250 | 245 | 525 | 15 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 22 | 239 | 278 | 272 | 583 | 17 | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 118 | 6 | 0 | | | | Lane Group Flow (vph) | 22 | 239 | 278 | 154 | 594 | 0 | | | | Turn Type | Perm | | | Perm | | | | | | Protected Phases | | 2 | 6 | | 4 | | | | | Permitted Phases | 2 | | | 6 | | | | | | Actuated Green, G (s) | 24.9 | 24.9 | 24.9 | 24.9 | 11.4 | | | | | Effective Green, q (s) | 25.5 | 25.5 | 25.5 | 25.5 | 11.5 | | | | | Actuated q/C Ratio | 0.57 | 0.57 | 0.57 | 0.57 | 0.26 | | | | | Clearance Time (s) | 4.6 | 4.6 | 4.6 | 4.6 | 4.1 | | | | | Vehicle Extension (s) | 6.1 | 6.1 | 6.1 | 6.1 | 2.0 | | | | | Lane Grp Cap (vph) | 622 | 1056 | 1056 | 897 | 877 | | | | | v/s Ratio Prot | | 0.13 | c0.15 | | c0.17 | | | | | v/s Ratio Perm | 0.02 | | | 0.10 | | | | | | v/c Ratio | 0.04 |
0.23 | 0.26 | 0.17 | 0.68 | | | | | Uniform Delay, d1 | 4.3 | 4.8 | 5.0 | 4.7 | 15.1 | | | | | Progression Factor | 1.00 | 1.00 | 0.42 | 0.82 | 1.00 | | | | | Incremental Delay, d2 | 0.1 | 0.5 | 0.5 | 0.3 | 1.6 | | | | | Delay (s) | 4.4 | 5.3 | 2.6 | 4.2 | 16.7 | | | | | Level of Service | Α | Α | Α | Α | В | | | | | Approach Delay (s) | | 5.3 | 3.4 | | 16.7 | | | | | Approach LOS | | Α | Α | | В | | | | | Intersection Summary | | | | | | | | | | HCM Average Control D | Delay | | 9.4 | H | ICM Lev | el of Service | Α | | | HCM Volume to Capaci | ty ratio | | 0.39 | | | | | | | Actuated Cycle Length (| (s) | | 45.0 | 5 | Sum of Id | ost time (s) | 8.0 | | | Intersection Capacity Ut | tilization | | 38.7% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | | | | | | c Critical Lane Group | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 3 HCM Signalized Intersection Capacity Analysis 4: Lake Mary Road & Minaret Road Saturday Peak - Alternative 1 10/12/2010 | | ۶ | - | • | • | ← | • | 1 | † | / | / | ļ | 4 | |-------------------------|------------|----------|-------|-------|-----------|----------|--------|----------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ٦ | ^ | 7 | ٦ | ^ | 7 | ľ | † | 7 | ሻሻ | f) | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | | | Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3539 | 1583 | 1770 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1672 | | | Flt Permitted | 0.36 | 1.00 | 1.00 | 0.30 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 675 | 3539 | 1583 | 550 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1672 | | | Volume (vph) | 115 | 460 | 170 | 80 | 350 | 145 | 415 | 320 | 100 | 555 | 65 | 140 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 128 | 511 | 189 | 89 | 389 | 161 | 461 | 356 | 111 | 617 | 72 | 156 | | RTOR Reduction (vph) | 0 | 0 | 83 | 0 | 0 | 126 | 0 | 0 | 75 | 0 | 86 | 0 | | Lane Group Flow (vph) | 128 | 511 | 106 | 89 | 389 | 35 | 461 | 356 | 36 | 617 | 142 | 0 | | Turn Type | pm+pt | | Perm | pm+pt | | Perm | Split | | Perm | Split | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 8 | 8 | | 7 | 7 | | | Permitted Phases | 2 | | 2 | 6 | | 6 | | | 8 | | | | | Actuated Green, G (s) | 25.6 | 19.6 | 19.6 | 23.2 | 18.4 | 18.4 | 27.1 | 27.1 | 27.1 | 20.0 | 20.0 | | | Effective Green, g (s) | 26.6 | 20.5 | 20.5 | 24.2 | 19.3 | 19.3 | 28.0 | 28.0 | 28.0 | 20.6 | 20.6 | | | Actuated g/C Ratio | 0.30 | 0.23 | 0.23 | 0.27 | 0.21 | 0.21 | 0.31 | 0.31 | 0.31 | 0.23 | 0.23 | | | Clearance Time (s) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 2.5 | 4.7 | 4.7 | 2.5 | 4.6 | 4.6 | 5.2 | 5.2 | 5.2 | 6.2 | 6.2 | | | Lane Grp Cap (vph) | 274 | 806 | 361 | 214 | 759 | 339 | 551 | 580 | 492 | 786 | 383 | | | v/s Ratio Prot | c0.03 | c0.14 | | 0.02 | 0.11 | | c0.26 | 0.19 | | c0.18 | 0.08 | | | v/s Ratio Perm | 0.11 | | 0.07 | 0.09 | | 0.02 | | | 0.02 | | | | | v/c Ratio | 0.47 | 0.63 | 0.29 | 0.42 | 0.51 | 0.10 | 0.84 | 0.61 | 0.07 | 0.78 | 0.37 | | | Uniform Delay, d1 | 24.3 | 31.4 | 28.8 | 25.6 | 31.2 | 28.4 | 28.9 | 26.4 | 21.9 | 32.6 | 29.2 | | | Progression Factor | 0.83 | 0.83 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.8 | 3.2 | 1.8 | 1.0 | 2.5 | 0.6 | 14.0 | 4.8 | 0.3 | 7.7 | 2.7 | | | Delay (s) | 20.9 | 29.4 | 26.4 | 26.6 | 33.7 | 29.0 | 42.9 | 31.2 | 22.1 | 40.4 | 32.0 | | | Level of Service | С | С | С | С | С | С | D | С | С | D | С | | | Approach Delay (s) | | 27.4 | | | 31.5 | | | 35.9 | | | 38.1 | | | Approach LOS | | С | | | С | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 33.4 | H | ICM Le | vel of S | ervice | | С | | | | | HCM Volume to Capaci | ity ratio | | 0.71 | | | | | | | | | | | Actuated Cycle Length | (s) | | 90.0 | 5 | Sum of le | ost time | (s) | | 12.0 | | | | | Intersection Capacity U | tilizatior | 1 | 66.1% | 10 | CU Leve | el of Se | rvice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 5: Main Street & Mountain Boulevard Saturday Peak - Alternative 1 10/12/2010 | | • | → | • | • | • | • | 1 | † | / | - | ţ | 4 | |--------------------------|-----------|----------|-------|------|--------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 413 | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 25 | 1235 | 65 | 30 | 575 | 85 | 10 | 20 | 20 | 55 | 15 | 55 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 28 | 1372 | 72 | 33 | 639 | 94 | 11 | 22 | 22 | 61 | 17 | 61 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 733 | | | 1444 | | | 1919 | 2264 | 722 | 1528 | 2253 | 367 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 733 | | | 1444 | | | 1919 | 2264 | 722 | 1528 | 2253 | 367 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 97 | | | 93 | | | 50 | 39 | 94 | 0 | 55 | 90 | | cM capacity (veh/h) | 867 | | | 465 | | | 22 | 36 | 369 | 36 | 37 | 630 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total | 714 | 758 | 353 | 414 | 56 | 139 | | | | | | | | Volume Left | 28 | 0 | 33 | 0 | 11 | 61 | | | | | | | | Volume Right | 0 | 72 | 0 | 94 | 22 | 61 | | | | | | | | cSH | 867 | 1700 | 465 | 1700 | 47 | 62 | | | | | | | | Volume to Capacity | 0.03 | 0.45 | 0.07 | 0.24 | 1.18 | 2.25 | | | | | | | | Queue Length 95th (ft) | 2 | 0 | 6 | 0 | 128 | 338 | | | | | | | | Control Delay (s) | 0.8 | 0.0 | 2.3 | 0.0 | 327.1 | 718.6 | | | | | | | | Lane LOS | Α | | Α | | F | F | | | | | | | | Approach Delay (s) | 0.4 | | 1.1 | | 327.1 | 718.6 | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 49.1 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 74.7% | I | CU Lev | el of Sei | vice | | D | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 5 HCM Unsignalized Intersection Capacity Analysis 6: Main Street & Center Street Saturday Peak - Alternative 1 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |--------------------------|-----------|------------|-------|------|------------|----------|-------|----------|------|-------------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | ľ | ↑ ↑ | | ٦ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 55 | 805 | 145 | 65 | 545 | 140 | 65 | 35 | 145 | 100 | 0 | 8 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 61 | 894 | 161 | 72 | 606 | 156 | 72 | 39 | 161 | 111 | 0 | 8 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 1207 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 761 | | | 1056 | | | 1633 | 2003 | 528 | 1578 | 2006 | 38 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 761 | | | 1056 | | | 1633 | 2003 | 528 | 1578 | 2006 | 38 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6. | | tC, 2 stage (s) | | | | | | | - | | | - | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | p0 queue free % | 93 | | | 89 | | | 0 | 20 | 67 | 0 | 100 | 8 | | cM capacity (veh/h) | 847 | | | 655 | | | 50 | 49 | 495 | 15 | 48 | 61 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 61 | 596 | 459 | 72 | 404 | 357 | 272 | 200 | | | | | | Volume Left | 61 | 0 | 0 | 72 | 0 | 0 | 72 | 111 | | | | | | Volume Right | 0 | 0 | 161 | 0 | 0 | 156 | 161 | 89 | | | | | | cSH |
847 | 1700 | 1700 | 655 | 1700 | 1700 | 106 | 26 | | | | | | Volume to Capacity | 0.07 | 0.35 | 0.27 | 0.11 | 0.24 | 0.21 | 2.58 | 7.60 | | | | | | Queue Length 95th (ft) | 6 | 0 | 0 | 9 | 0 | 0 | 623 | Err | | | | | | Control Delay (s) | 9.6 | 0.0 | 0.0 | 11.2 | 0.0 | 0.0 | | Err | | | | | | Lane LOS | A | | 2.0 | В | 2.0 | | F | F | | | | | | Approach Delay (s) | 0.5 | | | 1.0 | | | 802.0 | Err | | | | | | Approach LOS | | | | | | | F | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 916.3 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 60.7% | - 1 | CU Leve | el of Se | rvice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 6 HCM Unsignalized Intersection Capacity Analysis 7: Main Street & Forest Trail Saturday Peak - Alternative 1 | Lane Configurations | | ۶ | - | • | • | ← | • | 4 | † | / | - | ţ | 4 | |--|--------------------------|-----------|------------|-------|------|------------|----------|------|----------|------|------|------|------| | Sign Control Free | Movement | | EBT | EBR | | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ↑ ↑ | | | 4 | | | ર્ન | 7 | | Volume (veh/h) 15 985 15 15 605 70 15 0 20 145 5 35 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9 | | | | | | | | | | | | | | | Peak Hour Factor | Grade | | - , - | | | | | | | | | | | | Hourly flow rate (vph) 17 1094 17 17 672 78 17 0 22 161 6 39 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) | Volume (veh/h) | | | | 15 | | | 15 | - | | | | 35 | | Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vCc, conflicting volume vCl, stage 1 conf vol vCc, stage 2 conf vol vCu, unblocked vol vCl, stage 2 conf vol vCu, unblocked vol vCl, stage (s) LC, single (s) LC, stage (s) LF (s) LC, 2 | Peak Hour Factor | 0.90 | | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 0.90 | 0.90 | | Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked VC, conflicting volume VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC3, stage 1 conf vol VC4, stage 1 conf vol VC5, stage 1 conf vol VC6, stage 1 conf vol VC7, stage 1 conf vol VC9, stage 2 conf vol VC9, stage 3 conf vol VC9, stage 4 conf vol VC9, stage 5 conf vol VC9, stage 6 conf vol VC9, stage 7 conf vol VC9, stage 8 conf vol VC9, stage 8 conf vol VC9, stage 9 conf vol VC9, stage 1 conf vol VC9, stage 2 1 conf vol VC9, stage 2 conf vol VC9, stage 1 VC1, stage 1 conf vol VC9, stage 1 conf vol VC1, VC2, V | Hourly flow rate (vph) | 17 | 1094 | 17 | 17 | 672 | 78 | 17 | 0 | 22 | 161 | 6 | 39 | | Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) Dystream signal (ft) Oyc., conflicting volume VCQ, conflicting volume VCQ, stage 2 conf vol VCQ, stage 2 conf vol VCQ, single (s) C, 2 stage (s) EF (s) Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 17 730 381 17 448 302 39 206 Volume Length 17 0 0 17 0 0 17 0 0 17 0 0 17 18 Volume Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC2, conflicting volume vC3, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol vC9, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 3 conf vol vC4, unblocked vol vC5, stage 6 conf vol vC6, stage 7 conf vol vC7, stage 8 conf vol vC9, unblocked vol vC9, unblocked vol vC9, stage 9 conf vol vC9, unblocked vol vC9, stage 9 conf vol vC9, unblocked vol vC9, stage 1 conf 2 3 conf vol vC9, stage 2 conf vol vC9, stage 1 conf vol vC9, stage 1 conf vol vC9, stage 2 conf vol vC9, stage 1 conf vol vC9, stage 2 conf vol vC9, stage 1 conf vol vC9, stage 2 conf vol vC1, stage 1 conf vol vC9, stage 1 conf vol vC1, stage 1 conf vol vC1, stage 1 conf vol vC9, stage 2 conf vol vC1, stage 1 conf vol vC9, stage 1 conf vC1, | | | | | | | | | | | | | | | Right turn flare (veh) Median type | | | | | | | | | | | | | | | Median type None None None Median storage veh) Upstream signal (ft) 793 794 793 793 794 793 794 793 794 | | | | | | | | | | | | | | | Median storage veh) Upstream signal (ft) Upstream signal (ft) VC, ponflicting volume VC, conflicting volume VC2, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 8) VC1, stage 1 conf vol VC2, stage 9 conf vol VC2, stage 9 conf vol VC3, stage 1 conf vol VC4, unblocked vol VC5, stage 1 conf vol VC5, stage 1 conf vol VC5, stage 1 conf vol VC6, stage 1 conf vol VC9, stage 1 conf vol VC9, stage 1 conf vol VC1, stage 1 conf vol VC1, stage 1 conf vol VC2, stage 1 conf vol VC2, stage 1 conf vol VC1, stage 1 conf vol VC2, stage 1 conf vol VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 1 conf vol VC2, stage 2 1 conf vol VC2, stage 2 conf vol VC2, stage 1 | | | | | | | | | | | | | 1 | | Upstream signal (ft) 793 pX, platoon unblocked vC, conflicting volume 750 11111 1508 1919 556 1347 1889 375 vC1, stage 1 conf vol vCQ, unblocked vol 750 11111 1508 1919 556 1347 1889 375 vC1, stage 2 conf vol vCQ, unblocked vol 750 11111 1508 1919 556 1347 1889 375 vC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 (c) 2 2 2 3.5 4.0 3.3 3.5 4.0 3.3 (c) 2 2 2 2 3.5 4.0 3.3 3.5 4.0 3.3 3.5 9.0 queue free % 98 97 76 100 95 0 92 94 600 600 600 600 600 600 600 600 600 60 | | | | | | | | | None | | | None | | | pX, platoon unblocked vC, conflicting volume 750 1111 1508 1919 556 1347 1889 375 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 750 1111 1508 1919 556 1347 1889 375 vC2, stage 2 conf vol vCu, unblocked vol 750 1111 1508 1919 556 1347 1889 375 vC2, stage (s) vC1, stage (s) vC2, stage (s) vC2, stage (s) vC3, vC4, vC4, vC4, vC4, vC4, vC4, vC4, vC4 | | | | | | | | | | | | | | | CC, conflicting volume 750 1111 1508 1919 556 1347 1889 375 VC1, stage 1 conf vol vC2, stage 2 conf vol vCQ, unblocked vol 750 1111 1508 1919 556 1347 1889 375 VCQ, stage 2 conf vol vCQ, unblocked vol 750 1111 1508 1919 556 1347 1889 375 VCQ, stage (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 (C, 2 stage (s) VCQ, stage
(s) VCQ, unblocked vol 750 1111 1508 1919 556 1347 1889 375 VCQ, stage (s) VCQ, unblocked vol 750 1509 7509 un | | | | | | 793 | | | | | | | | | VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, unblocked vol T50 T1111 T508 T919 T56 T347 T889 T75 T6, single (s) T7, | | | | | | | | | | | | | | | VCQ, stage 2 conf vol VCu, unblocked vol 750 11111 1508 1919 556 1347 1889 375 IC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 IC, 2 stage (s) IF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 PO queue free % 98 97 76 100 95 0 92 94 CM capacity (veh/h) 855 624 70 63 475 101 66 623 Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 17 730 381 17 448 302 39 206 Volume Left 17 0 0 17 0 0 17 161 Volume Right 0 17 0 0 17 0 0 17 161 Volume Right 0 17 0 0 78 22 39 CSH 855 1700 1700 624 1700 1700 137 118 Volume to Capacity (0.2 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | | 750 | | | 1111 | | | 1508 | 1919 | 556 | 1347 | 1889 | 375 | | vCu, unblocked vol 750 1111 1508 1919 556 1347 1889 375 (C, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 (C, 2 stage (s)) | vC1, stage 1 conf vol | | | | | | | | | | | | | | tC, single (s) | vC2, stage 2 conf vol | | | | | | | | | | | | | | IC, 2 stage (s) IF (s) | vCu, unblocked vol | | | | | | | | | | | | 375 | | IF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 98 97 76 100 95 0 92 94 cM capacity (veh/h) 855 624 70 63 475 101 66 623 Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 17 730 381 17 448 302 39 206 Volume Left 17 0 0 17 0 0 17 161 Volume Right 0 0 17 0 0 78 22 39 cSH 855 1700 1700 624 1700 1700 137 118 Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | p0 queue free % 98 97 76 100 95 0 92 94 CM capacity (veh/h) 855 624 70 63 475 101 66 623 Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 17 730 381 17 448 302 39 206 Volume Left 17 0 0 17 0 0 17 161 Volume Right 0 0 17 0 0 78 22 39 CSH 855 1700 1700 624 1700 1700 137 118 Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | | | | | | | | | | | | | | | CM capacity (veh/h) 855 624 70 63 475 101 66 623 Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 17 730 381 17 448 302 39 206 Volume Left 17 0 0 17 0 0 17 161 Volume Right 0 0 17 0 0 78 22 39 CSH 855 1700 1700 624 1700 1700 137 118 Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | tF (s) | | | | | | | | | | 3.5 | | 3.3 | | Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 17 730 381 17 448 302 39 206 Volume Left 17 0 0 17 0 0 17 161 Volume Right 0 0 17 0 0 78 22 39 cSH 855 1700 1700 624 1700 1700 137 118 Volume Length 95th (ft) 1 0 0 2 0.3 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach Delay (s) 0.1 0.2 41.3 430.0 Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | | | | | | | | | | | | | 94 | | Volume Total 17 730 381 17 448 302 39 206 Volume Left 17 0 0 17 0 0 17 161 Volume Right 0 0 17 0 0 78 22 39 cSH 855 1700 1700 624 1700 137 118 Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization | cM capacity (veh/h) | 855 | | | 624 | | | 70 | 63 | 475 | 101 | 66 | 623 | | Volume Left 17 0 0 17 0 0 17 161 Volume Right 0 0 17 0 0 78 22 39 cSH 855 1700 1700 624 1700 1700 137 118 Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Right 0 0 17 0 0 78 22 39 cSH 855 1700 1700 624 1700 1700 137 118 Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Volume Total | 17 | 730 | 381 | 17 | 448 | 302 | 39 | 206 | | | | | | CSH 855 1700 1700 624 1700 1700 137 118 Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Volume Left | 17 | 0 | 0 | 17 | 0 | 0 | 17 | 161 | | | | | | Volume to Capacity 0.02 0.43 0.22 0.03 0.26 0.18 0.28 1.74 Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Volume Right | 0 | 0 | 17 | 0 | 0 | 78 | 22 | 39 | | | | | | Queue Length 95th (ft) 1 0 0 2 0 0 27 395 Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | cSH | 855 | 1700 | 1700 | 624 | 1700 | 1700 | 137 | 118 | | | | | | Control Delay (s) 9.3 0.0 0.0 10.9 0.0 0.0 41.3 430.0 Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Volume to Capacity | 0.02 | 0.43 | 0.22 | 0.03 | 0.26 | 0.18 | 0.28 | 1.74 | | | | | | Lane LOS A B E F Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Queue Length 95th (ft) | 1 | 0 | 0 | 2 | 0 | 0 | 27 | 395 | | | | | | Approach Delay (s) 0.1 0.2 41.3 430.0 Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Control Delay (s) | 9.3 | 0.0 | 0.0 | 10.9 | 0.0 | 0.0 | 41.3 | 430.0 | | | | | | Approach LOS E F Intersection Summary Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Lane LOS | Α | | | В | | | Е | F | | | | | | Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Approach Delay (s) | 0.1 | | | 0.2 | | | 41.3 | 430.0 | | | | | | Average Delay 42.2 Intersection Capacity Utilization 49.3% ICU Level of Service A | Approach LOS | | | | | | | Е | F | | | | | | Intersection Capacity Utilization 49.3% ICU Level of Service A | Intersection Summary | | | | | | | | | | | | | | | Average Delay | | | | | | | | | | | | | | Analysis Period (min) 15 | Intersection Capacity Ut | ilization | | 49.3% | I | CU Lev | el of Se | vice | | Α | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 7 HCM Unsignalized Intersection Capacity Analysis 8: Main Street & Laurel Mountain Road Saturday Peak - Alternative 1 10/12/2010 | | - | • | • | ← | 4 | / | | | | |---------------------------|-------------|------|-----------|----------|---------|---------------|----|---|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | | Lane Configurations | † 1> | | ች | ^ | ¥ | | | | | | Sign Control | Free | | | Free | Stop | | | | | | Grade | 0% | | | 0% | 0% | | | | | | Volume (veh/h) | 915 | 175 | 20 | 595 | 100 | 30 | | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Hourly flow rate (vph) | 1017 | 194 | 22 | 661 | 111 | 33 | | | | | Pedestrians | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | Percent Blockage | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | Median type | | | | | None | | | | | | Median storage veh) | | | | | | | | | | | Upstream signal (ft) | | | | 505 | | | | | | | pX, platoon unblocked | | | | | | | | | | | vC, conflicting volume | | | 1211 | | 1489 | 606 | | | | | vC1, stage 1 conf vol | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | vCu, unblocked vol | | | 1211 | | 1489 | 606 | | | | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | | | | tC, 2 stage (s) | | | 0.0 | | 2.5 | 2.2 | | | | | tF (s)
p0 queue free % | | | 2.2
96 | | 3.5 | 3.3
92 | | | | | cM capacity (veh/h) | | | 572 | | 110 | 440 | | | | | , | | | | | 110 | | | | | | Direction, Lane # | EB 1 | EB 2 | | WB 2 | WB 3 | NB 1 | | | | | Volume Total | 678 | 533 | 22 | 331 | 331 | 144 | | | | | Volume
Left | 0 | 0 | 22 | 0 | 0 | 111 | | | | | Volume Right | 0 | 194 | 0 | 0 | 0 | 33 | | | | | cSH | 1700 | 1700 | 572 | 1700 | 1700 | 133 | | | | | Volume to Capacity | 0.40 | 0.31 | 0.04 | 0.19 | 0.19 | 1.08 | | | | | Queue Length 95th (ft) | 0 | 0 | 3 | 0 | 0 | 202 | | | | | Control Delay (s) | 0.0 | 0.0 | 11.6 | 0.0 | 0.0 | 167.0 | | | | | Lane LOS | 0.0 | | В | | | F | | | | | Approach Delay (s) | 0.0 | | 0.4 | | | 167.0 | | | | | Approach LOS | | | | | | F | | | | | Intersection Summary | | | | | | | | | | | Average Delay | | | 12.0 | | | | | | | | Intersection Capacity Ut | ilization | | 44.9% | 10 | CU Leve | el of Service | ce | Α | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 9: Main Street & Old Mammoth Road Saturday Peak - Alternative 1 10/12/2010 | | - | • | • | • | 1 | ~ | | |--------------------------|-----------|-------|-------|----------|--------|----------------|---| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | ^ | 7 | * | ^ | * | 7 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | | Frt | 1.00 | 0.85 | 1.00 | 1.00 | 1.00 | 0.85 | | | Flt Protected | 1.00 | 1.00 | 0.95 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 3539 | 1583 | 1770 | 3539 | 1770 | 1583 | | | Flt Permitted | 1.00 | 1.00 | 0.41 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 3539 | 1583 | 757 | 3539 | 1770 | 1583 | | | Volume (vph) | 340 | 585 | 100 | 255 | 325 | 75 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 378 | 650 | 111 | 283 | 361 | 83 | | | RTOR Reduction (vph) | 0 | 451 | 0 | 0 | 0 | 50 | | | Lane Group Flow (vph) | 378 | 199 | 111 | 283 | 361 | 33 | | | Turn Type | | Perm | pm+pt | | | Perm | | | Protected Phases | 2 | | 1 | 6 | 3 | | | | Permitted Phases | | 2 | 6 | | | 3 | | | Actuated Green, G (s) | 16.5 | 16.5 | 25.1 | 25.1 | 22.3 | 22.3 | | | Effective Green, g (s) | 17.4 | 17.4 | 26.0 | 26.0 | 22.9 | 22.9 | | | Actuated g/C Ratio | 0.31 | 0.31 | 0.46 | 0.46 | 0.40 | 0.40 | | | Clearance Time (s) | 4.9 | 4.9 | 4.1 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 5.2 | 5.2 | 2.5 | 5.2 | 5.2 | 5.2 | | | Lane Grp Cap (vph) | 1082 | 484 | 428 | 1617 | 712 | 637 | | | v/s Ratio Prot | 0.11 | | c0.02 | 0.08 | c0.20 | | | | v/s Ratio Perm | | c0.13 | 0.10 | | | 0.02 | | | v/c Ratio | 0.35 | 0.41 | 0.26 | 0.18 | 0.51 | 0.05 | | | Uniform Delay, d1 | 15.4 | 15.7 | 9.2 | 9.1 | 12.8 | 10.4 | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.4 | 1.3 | 0.2 | 0.1 | 2.6 | 0.2 | | | Delay (s) | 15.8 | 16.9 | 9.4 | 9.2 | 15.3 | 10.5 | | | Level of Service | В | В | Α | Α | В | В | | | Approach Delay (s) | 16.5 | | | 9.3 | 14.4 | | | | Approach LOS | В | | | Α | В | | | | Intersection Summary | | | | | | | | | HCM Average Control D | | | 14.5 | H | ICM Le | vel of Service |) | | HCM Volume to Capaci | | | 0.45 | | | | | | Actuated Cycle Length (| | | 56.9 | | | ost time (s) | | | Intersection Capacity Ut | ilization | | 48.4% | l l | CU Lev | el of Service | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 9 HCM Unsignalized Intersection Capacity Analysis 10: Main Street & Sierra Park Boulevard Saturday Peak - Alternative 1 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 1 | |--------------------------|------------|-------------|-------|------|------------|-----------|------|----------|----------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ î≽ | | ሻ | † } | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 350 | 85 | 40 | 290 | 10 | 40 | 10 | 45 | 10 | 10 | 15 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 389 | 94 | 44 | 322 | 11 | 44 | 11 | 50 | 11 | 11 | 17 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | 544 | | | | | | | | | | | | pX, platoon unblocked | | | | 0.96 | | | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | vC, conflicting volume | 333 | | | 483 | | | 731 | 881 | 242 | 689 | 922 | 167 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 333 | | | 424 | | | 681 | 837 | 173 | 638 | 880 | 167 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 99 | | | 96 | | | 85 | 96 | 94 | 96 | 96 | 98 | | cM capacity (veh/h) | 1223 | | | 1089 | | | 295 | 276 | 809 | 304 | 260 | 848 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 11 | 259 | 224 | 44 | 215 | 119 | 106 | 39 | | | | | | Volume Left | 11 | 0 | 0 | 44 | 0 | 0 | 44 | 11 | | | | | | Volume Right | 0 | 0 | 94 | 0 | 0 | 11 | 50 | 17 | | | | | | cSH | 1223 | 1700 | 1700 | 1089 | 1700 | 1700 | 418 | 393 | | | | | | Volume to Capacity | 0.01 | 0.15 | 0.13 | 0.04 | 0.13 | 0.07 | 0.25 | 0.10 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 3 | 0 | 0 | 25 | 8 | | | | | | Control Delay (s) | 8.0 | 0.0 | 0.0 | 8.4 | 0.0 | 0.0 | 16.5 | 15.2 | | | | | | Lane LOS | Α | | | Α | | | С | С | | | | | | Approach Delay (s) | 0.2 | | | 1.0 | | | 16.5 | 15.2 | | | | | | Approach LOS | | | | | | | С | С | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 2.7 | | | | | | | | | | | Intersection Capacity Ut | tilization | | 34.4% | - 1 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 11: Tavern Road & Old Mammoth Road Saturday Peak - Alternative 1 10/12/2010 | | • | - | • | • | • | • | 4 | † | ~ | - | ↓ | 4 | |--------------------------|-----------|------|-------|------|---------|-----------|------|----------|------|------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | J. | f) | | ሻ | î, | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 25 | 10 | 45 | 5 | 10 | 25 | 55 | 425 | 10 | 15 | 710 | 45 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 28 | 11 | 50 | 6 | 11 | 28 | 61 | 472 | 11 | 17 | 789 | 50 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 760 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1475 | 1453 | 814 | 1478 | 1472 | 478 | 839 | | | 483 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1475 | 1453 | 814 | 1478 | 1472 | 478 | 839 | | | 483 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 68 | 91 | 87 | 93 | 90 | 95 | 92 | | | 98 | | | | cM capacity (veh/h) | 86 | 118 | 378 | 78 | 115 | 588 | 796 | | | 1079 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 89 | 44 | 61 | 483 | 17 | 839 | | | | | | | | Volume Left | 28 | 6 | 61 | 0 | 17 | 0 | | | | | | | | Volume Right | 50 | 28 | 0 | 11 | 0 | 50 | | | | | | | | cSH | 162 | 207 | 796 | 1700 | 1079 | 1700 | | | | | | | | Volume to Capacity | 0.55 | 0.21 | 0.08 | 0.28 | 0.02 | 0.49 | | | | | | | | Queue Length 95th (ft) | 70 | 20 | 6 | 0 | 1 | 0 | | | | | | | | Control Delay (s) | 51.5 | 27.1 | 9.9 | 0.0 | 8.4 | 0.0 | | | | | | | | Lane LOS | F | D | Α | | Α | | | | | | | | | Approach Delay (s) | 51.5 | 27.1 | 1.1 | | 0.2 | | | | | | | | | Approach LOS | F | D | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 4.3 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 61.8% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 11 HCM Unsignalized Intersection Capacity Analysis 12: Sierra Nevada Road & Old Mammoth Road Saturday Peak - Alternative 1 10/12/2010 | | ၨ | → | • | • | ← | • | 4 | † | / | > | ↓ | 1 | |--------------------------|------------|----------|-------|------|----------|-----------|------|----------|------|-------------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ٦ | î, | | ٦ | 4î | | | Sign
Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 15 | 85 | 20 | 20 | 30 | 70 | 410 | 5 | 45 | 625 | 45 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 17 | 94 | 22 | 22 | 33 | 78 | 456 | 6 | 50 | 694 | 50 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | 773 | | | | | | pX, platoon unblocked | 0.99 | 0.99 | | 0.99 | 0.99 | 0.99 | | | | 0.99 | | | | vC, conflicting volume | 1475 | 1436 | 719 | 1511 | 1458 | 458 | 744 | | | 461 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1478 | 1439 | 719 | 1514 | 1461 | 455 | 744 | | | 458 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 70 | 85 | 78 | 63 | 80 | 94 | 91 | | | 95 | | | | cM capacity (veh/h) | 75 | 115 | 428 | 61 | 111 | 601 | 863 | | | 1096 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 133 | 78 | 78 | 461 | 50 | 744 | | | | | | | | Volume Left | 22 | 22 | 78 | 0 | 50 | 0 | | | | | | | | Volume Right | 94 | 33 | 0 | 6 | 0 | 50 | | | | | | | | cSH | 201 | 125 | 863 | 1700 | 1096 | 1700 | | | | | | | | Volume to Capacity | 0.66 | 0.62 | 0.09 | 0.27 | 0.05 | 0.44 | | | | | | | | Queue Length 95th (ft) | 100 | 80 | 7 | 0 | 4 | 0 | | | | | | | | Control Delay (s) | 52.5 | 72.0 | 9.6 | 0.0 | 8.4 | 0.0 | | | | | | | | Lane LOS | F | F | Α | | Α | | | | | | | | | Approach Delay (s) | 52.5 | 72.0 | 1.4 | | 0.5 | | | | | | | | | Approach LOS | F | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 8.9 | | | | | | | | | | | Intersection Capacity Ut | tilization | 1 | 57.7% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 13: Meridian Boulevard & Majestic Pines Drive Saturday Peak - Alternative 1 10/12/2010 | TO: MICHAIGH BOGIOT | | , | | | | | | |--------------------------|-----------|------|-------------|------|---------|-----------|--------| | | ۶ | - | • | • | - | 4 | | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | | 41≯ | † î> | | ¥ | | | | Sign Control | | Free | Free | | Stop | | | | Grade | | 0% | 0% | | 0% | | | | Volume (veh/h) | 60 | 455 | 225 | 70 | 50 | 40 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Hourly flow rate (vph) | 67 | 506 | 250 | 78 | 56 | 44 | | | Pedestrians | | | | | | | | | Lane Width (ft) | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | Percent Blockage | | | | | | | | | Right turn flare (veh) | | | | | | | | | Median type | | | | | None | | | | Median storage veh) | | | | | | | | | Upstream signal (ft) | | | | | | | | | pX, platoon unblocked | | | | | | | | | vC, conflicting volume | 328 | | | | 675 | 164 | | | vC1, stage 1 conf vol | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | vCu, unblocked vol | 328 | | | | 675 | 164 | | | tC, single (s) | 4.1 | | | | 6.8 | 6.9 | | | tC, 2 stage (s) | | | | | | | | | tF (s) | 2.2 | | | | 3.5 | 3.3 | | | p0 queue free % | 95 | | | | 85 | 95 | | | cM capacity (veh/h) | 1229 | | | | 366 | 852 | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | SB 1 | | | | Volume Total | 235 | 337 | 167 | 161 | 100 | | | | Volume Left | 67 | 0 | 0 | 0 | 56 | | | | Volume Right | 0 | 0 | 0 | 78 | 44 | | | | cSH | 1229 | 1700 | 1700 | 1700 | 491 | | | | Volume to Capacity | 0.05 | 0.20 | 0.10 | 0.09 | 0.20 | | | | Queue Length 95th (ft) | 4 | 0 | 0 | 0 | 19 | | | | Control Delay (s) | 2.6 | 0.0 | 0.0 | 0.0 | 14.2 | | | | Lane LOS | A | | | | В | | | | Approach Delay (s) | 1.1 | | 0.0 | | 14.2 | | | | Approach LOS | | | | | В | | | | Intersection Summary | | | | | | | | | Average Delay | | | 2.0 | | | | | | Intersection Capacity Ut | ilization | 1 | 38.0% | I. | CU Leve | el of Ser | vice A | | Analysis Period (min) | | | 15 | | | | | | . , | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 13 HCM Signalized Intersection Capacity Analysis 14: Meridian Boulevard & Minaret Road Saturday Peak - Alternative 1 10/12/2010 | | ۶ | - | • | • | ← | • | 1 | † | ~ | / | ţ | 4 | |-------------------------|------------|------------|-------|-------|-------------|-----------|--------|------|------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † } | | ሻ | ∱ î≽ | | ሻ | ₽ | | ٦ | 4î | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.96 | | 1.00 | 0.94 | | 1.00 | 0.98 | | 1.00 | 0.98 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3408 | | 1770 | 3311 | | 1770 | 1826 | | 1770 | 1817 | | | Flt Permitted | 0.34 | 1.00 | | 0.39 | 1.00 | | 0.28 | 1.00 | | 0.42 | 1.00 | | | Satd. Flow (perm) | 629 | 3408 | | 726 | 3311 | | 524 | 1826 | | 777 | 1817 | | | Volume (vph) | 155 | 335 | 110 | 35 | 205 | 155 | 60 | 195 | 30 | 330 | 485 | 95 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 172 | 372 | 122 | 39 | 228 | 172 | 67 | 217 | 33 | 367 | 539 | 106 | | RTOR Reduction (vph) | 0 | 34 | 0 | 0 | 135 | 0 | 0 | 6 | 0 | 0 | 8 | 0 | | Lane Group Flow (vph) | 172 | 460 | 0 | 39 | 265 | 0 | 67 | 244 | 0 | 367 | 637 | 0 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | | pm+pt | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 24.5 | 18.7 | | 18.9 | 15.9 | | 25.9 | 22.9 | | 41.5 | 34.4 | | | Effective Green, g (s) | 25.5 | 19.6 | | 19.9 | 16.8 | | 26.9 | 23.8 | | 42.4 | 35.3 | | | Actuated g/C Ratio | 0.33 | 0.25 | | 0.26 | 0.22 | | 0.35 | 0.31 | | 0.55 | 0.46 | | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | | Vehicle Extension (s) | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | | Lane Grp Cap (vph) | 295 | 866 | | 229 | 721 | | 233 | 564 | | 615 | 832 | | | v/s Ratio Prot | c0.04 | 0.13 | | 0.01 | 0.08 | | 0.01 | 0.13 | | c0.11 | c0.35 | | | v/s Ratio Perm | c0.15 | | | 0.04 | | | 0.09 | | | 0.21 | | | | v/c Ratio | 0.58 | 0.53 | | 0.17 | 0.37 | | 0.29 | 0.43 | | 0.60 | 0.77 | | | Uniform Delay, d1 | 19.5 | 24.8 | | 21.8 | 25.6 | | 17.4 | 21.3 | | 10.6 | 17.5 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.4 | 1.1 | | 0.3 | 0.7 | | 0.5 | 1.1 | | 1.3 | 5.0 | | | Delay (s) | 21.9 | 25.9 | | 22.0 | 26.3 | | 17.9 | 22.4 | | 11.9 | 22.5 | | | Level of Service | С | С | | С | С | | В | С | | В | С | | | Approach Delay (s) | | 24.9 | | | 25.9 | | | 21.4 | | | 18.6 | | | Approach LOS | | С | | | С | | | С | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 22.0 | H | ICM Le | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | ity ratio | | 0.73 | | | | | | | | | | | Actuated Cycle Length | (s) | | 77.1 | S | Sum of le | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | | 68.9% | 10 | CU Leve | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 15: Meridian Boulevard & Old Mammoth Road Saturday Peak - Alternative 1 10/12/2010 | | • | - | • | • | • | • | 1 | 1 | ~ | - | ¥ | 4 | |------------------------|----------|-------------|------|-------|-------------|-----------|--------|---------|------|-------|---------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ች | † 1> | | ች | ∱ î> | | ች | | 7 | ኻ | | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 0.98 | | 1.00 | 0.97 | | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1770 | 3457 | | 1770 | 3444 | | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | | Flt Permitted | 0.34 | 1.00 | | 0.17 | 1.00 | | 0.27 | 1.00 | 1.00 | 0.47 | 1.00 | 1.00 | | Satd. Flow (perm) | 635 | 3457 | | 321 | 3444 | | 511 | 1863 | 1583 | 879 | 1863 | 1583 | | Volume (vph) | 185 | 680 | 125 | 110 | 365 | 80 | 145 | 245 | 55 | 125 | 345 | 60 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 206 | 756 | 139 | 122 | 406 | 89 | 161 | 272 | 61 | 139 | 383 | 67 | | RTOR Reduction (vph) | 0 | 17 | 0 | 0 | 21 | 0 | 0 | 0 | 42 | 0 | 0 | 47 | | Lane Group Flow (vph) | 206 | 878 | 0 | 122 | 474 | 0 | 161 | 272 | 19 | 139 | 383 | 20 | | | pm+pt | | | pm+pt
 | | pm+pt | | Perm | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | 8 | 4 | | 4 | | Actuated Green, G (s) | 32.4 | 24.7 | | 27.6 | 22.3 | | 27.2 | 21.7 | 21.7 | 25.6 | 20.9 | 20.9 | | Effective Green, g (s) | 33.4 | 25.6 | | 28.6 | 23.2 | | 28.2 | 22.6 | 22.6 | 26.6 | 21.8 | 21.8 | | Actuated g/C Ratio | 0.45 | 0.34 | | 0.38 | 0.31 | | 0.38 | 0.30 | 0.30 | 0.36 | 0.29 | 0.29 | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | | Vehicle Extension (s) | 2.5 | 3.7 | | 2.5 | 3.8 | | 2.5 | 3.8 | 3.8 | 2.5 | 3.8 | 3.8 | | Lane Grp Cap (vph) | 404 | 1190 | | 229 | 1074 | | 288 | 566 | 481 | 372 | 546 | 464 | | v/s Ratio Prot | c0.05 | c0.25 | | 0.04 | 0.14 | | c0.04 | 0.15 | | 0.02 | c0.21 | | | v/s Ratio Perm | 0.18 | | | 0.17 | | | 0.17 | | 0.01 | 0.11 | | 0.01 | | v/c Ratio | 0.51 | 0.74 | | 0.53 | 0.44 | | 0.56 | 0.48 | 0.04 | 0.37 | 0.70 | 0.04 | | Uniform Delay, d1 | 13.2 | 21.4 | | 16.1 | 20.4 | | 16.8 | 21.1 | 18.2 | 16.8 | 23.4 | 18.8 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 0.7 | 2.5 | | 1.8 | 0.4 | | 1.9 | 0.8 | 0.0 | 0.5 | 4.3 | 0.0 | | Delay (s) | 14.0 | 24.0 | | 18.0 | 20.8 | | 18.6 | 21.9 | 18.3 | 17.3 | 27.7 | 18.9 | | Level of Service | В | С | | В | С | | В | С | В | В | С | В | | Approach Delay (s) | | 22.1 | | | 20.2 | | | 20.4 | | | 24.2 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control D | | | 21.9 | H | ICM Le | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | ty ratio | | 0.71 | | | | | | | | | | | Actuated Cycle Length | (s) | | 74.4 | 5 | Sum of I | ost time | (s) | | 16.0 | | | | | Intersection Summary | | | | | |-----------------------------------|-------|----------------------|------|--| | HCM Average Control Delay | 21.9 | HCM Level of Service | С | | | HCM Volume to Capacity ratio | 0.71 | | | | | Actuated Cycle Length (s) | 74.4 | Sum of lost time (s) | 16.0 | | | Intersection Capacity Utilization | 68.4% | ICU Level of Service | С | | | Analysis Period (min) | 15 | | | | | c Critical Lane Group | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 15 HCM Unsignalized Intersection Capacity Analysis 16: Meridian Boulevard & Sierra Park Road Saturday Peak - Alternative 1 10/12/2010 | | ၨ | → | • | • | ← | • | 4 | † | / | > | ↓ | 1 | |--------------------------|-----------|----------|-------|-------|----------|-----------|------|----------|------|-------------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 4î | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Stop | | | Stop | | | Volume (vph) | 50 | 160 | 5 | 5 | 155 | 15 | 25 | 5 | 5 | 15 | 5 | 80 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 56 | 178 | 6 | 6 | 172 | 17 | 28 | 6 | 6 | 17 | 6 | 89 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total (vph) | 144 | 94 | 92 | 103 | 39 | 111 | | | | | | | | Volume Left (vph) | 56 | 0 | 6 | 0 | 28 | 17 | | | | | | | | Volume Right (vph) | 0 | 6 | 0 | 17 | 6 | 89 | | | | | | | | Hadj (s) | 0.23 | -0.01 | 0.06 | -0.08 | 0.09 | -0.42 | | | | | | | | Departure Headway (s) | 5.3 | 5.1 | 5.2 | 5.0 | 5.1 | 4.5 | | | | | | | | Degree Utilization, x | 0.21 | 0.13 | 0.13 | 0.14 | 0.06 | 0.14 | | | | | | | | Capacity (veh/h) | 651 | 685 | 665 | 687 | 642 | 729 | | | | | | | | Control Delay (s) | 8.5 | 7.6 | 7.8 | 7.7 | 8.4 | 8.3 | | | | | | | | Approach Delay (s) | 8.2 | | 7.7 | | 8.4 | 8.3 | | | | | | | | Approach LOS | Α | | Α | | Α | Α | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Delay | | | 8.1 | | | | | | | | | | | HCM Level of Service | | | Α | | | | | | | | | | | Intersection Capacity Ut | ilization | | 27.7% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | ` ' | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 17: Chateau Road & Old Mammoth Road Saturday Peak - Alternative 1 | | ۶ | → | • | • | ← | • | 1 | † | ~ | - | ţ | 4 | |------------------------|------|----------|------|------|----------|------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ٦ | f. | | ሻ | 4î | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 35 | 35 | 10 | 10 | 20 | 60 | 10 | 325 | 10 | 110 | 395 | 85 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 39 | 39 | 11 | 11 | 22 | 67 | 11 | 361 | 11 | 122 | 439 | 94 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 1037 | | | pX, platoon unblocked | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | 0.95 | | | | | | | vC, conflicting volume | 1192 | 1125 | 486 | 1103 | 1167 | 367 | 533 | | | 372 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1202 | 1132 | 459 | 1108 | 1175 | 367 | 509 | | | 372 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 66 | 77 | 98 | 92 | 86 | 90 | 99 | | | 90 | | | | cM capacity (veh/h) | 113 | 171 | 572 | 132 | 161 | 679 | 1004 | | | 1186 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 89 | 100 | 11 | 372 | 122 | 533 | | | | | | | | Volume Left | 39 | 11 | 11 | 0 | 122 | 0 | | | | | | | | Volume Right | 11 | 67 | 0 | 11 | 0 | 94 | | | | | | | | cSH | 151 | 312 | 1004 | 1700 | 1186 | 1700 | | | | | | | | Volume to Capacity | 0.59 | 0.32 | 0.01 | 0.22 | 0.10 | 0.31 | | | | | | | | Queue Length 95th (ft) | 77 | 34 | 1 | 0 | 9 | 0 | | | | | | | | Control Delay (s) | 58.4 | 21.9 | 8.6 | 0.0 | 8.4 | 0.0 | | | | | | | | Lane LOS | F | С | Α | | Α | | | | | | | | | Approach Delay (s) | 58.4 | 21.9 | 0.3 | | 1.6 | | | | | | | | | Approach LOS | F | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 6.9 | | | | | | | | | | | Intersection Summary | | | | |-----------------------------------|-------|----------------------|---| | Average Delay | 6.9 | | | | Intersection Capacity Utilization | 50.3% | ICU Level of Service | Α | | Analysis Period (min) | 15 | | | | | | | | HCM Unsignalized Intersection Capacity Analysis Page 17 HCM Unsignalized Intersection Capacity Analysis 18: Old Mammoth Road & Minaret Road Saturday Peak - Alternative 1 10/12/2010 | | • | → | • | • | ← | • | 4 | † | - | - | ļ | 4 | |--------------------------|------------|----------|-------|------|----------|----------|-------|----------|------|------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | ሻ | 4 | | ሻ | 1 | | | ની | 7 | ሻ | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 115 | 165 | 45 | 135 | 190 | 95 | 20 | 65 | 90 | 105 | 155 | 22 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 128 | 183 | 50 | 150 | 211 | 106 | 22 | 72 | 100 | 117 | 172 | 24 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 317 | | | 233 | | | 1306 | 1081 | 208 | 1089 | 1053 | 26 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 317 | | | 233 | | | 1306 | 1081 | 208 | 1089 | 1053 | 26 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6. | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | p0 queue free % | 90 | | | 89 | | | 0 | 58 | 88 | 0 | 4 | 6 | | cM capacity (veh/h) | 1243 | | | 1334 | | | 12 | 174 | 832 | 98 | 180 | 77 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | SB 2 | | | | | | | Volume Total | 128 | 233 | 150 | 317 | 194 | 117 | 417 | | | | | | | Volume Left | 128 | 0 | 150 | 0 | 22 | 117 | 0 | | | | | | | Volume Right | 0 | 50 | 0 | 106 | 100 | | 244 | | | | | | | cSH | 1243 | 1700 | 1334 | 1700 | 212 | 98 | 328 | | | | | | | Volume to Capacity | 0.10 | 0.14 | 0.11 | 0.19 | 0.92 | 1.19 | 1.27 | | | | | | | Queue Length 95th (ft) | 9 | 0 | 9 | 0 | 187 | 197 | 481 | | | | | | | Control Delay (s) | 8.2 | 0.0 | 8.0 | 0.0 | 88.7 | 231.4 | 177.0 | | | | | | | Lane LOS | A | | A | | F | F | F | | | | | | | Approach Delay (s) | 2.9 | | 2.6 | | 88.7 | 188.9 | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 77.3 | |
 | | | | | | | | Intersection Capacity Ut | tilization | | 53.8% | 10 | CU Lev | el of Se | rvice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 18 Town of Mammoth Lakes General Plan Mammoth Lakes (LSC#084870) LSC, Inc. (BP) LSC, Inc. ## Future - Alternative 2 LOS Reports HCM Unsignalized Intersection Capacity Analysis 1: Forest Trail & Minaret Road Saturday Peak - Alternative 2 10/12/2010 | | • | - | • | • | • | • | 4 | † | - | - | ţ | 4 | |-------------------------|------------|-------|-------|------|--------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | | € | | | - ↔ | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 35 | 100 | 20 | 20 | 15 | 75 | 190 | 35 | 90 | 730 | 110 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 39 | 111 | 22 | 22 | 17 | 83 | 211 | 39 | 100 | 811 | 122 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1497 | 1489 | 872 | 1600 | 1531 | 231 | 933 | | | 250 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1497 | 1489 | 872 | 1600 | 1531 | 231 | 933 | | | 250 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 68 | 62 | 68 | 38 | 77 | 98 | 89 | | | 92 | | | | cM capacity (veh/h) | 70 | 101 | 350 | 36 | 96 | 809 | 733 | | | 1316 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 172 | 61 | 333 | 1033 | | | | | | | | | | Volume Left | 22 | 22 | 83 | 100 | | | | | | | | | | Volume Right | 111 | 17 | 39 | 122 | | | | | | | | | | cSH | 169 | 70 | 733 | 1316 | | | | | | | | | | Volume to Capacity | 1.02 | 0.88 | 0.11 | 0.08 | | | | | | | | | | Queue Length 95th (ft) | 205 | 107 | 10 | 6 | | | | | | | | | | Control Delay (s) | 128.8 | 174.3 | 3.7 | 2.0 | | | | | | | | | | Lane LOS | F | F | Α | Α | | | | | | | | | | Approach Delay (s) | 128.8 | 174.3 | 3.7 | 2.0 | | | | | | | | | | Approach LOS | F | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 22.6 | | | | | | | | | | | Intersection Capacity U | tilizatior | 1 | 71.3% | 10 | CU Lev | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 1 HCM Unsignalized Intersection Capacity Analysis 2: Lake Mary Road & Davidson Saturday Peak - Alternative 2 10/12/2010 | | ۶ | - | • | • | ← | • | 1 | † | / | - | ļ | 1 | |--------------------------|-----------|------|-------|----------|----------|-----------|------|----------|------|------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | | 4 | | | 4 | | | 4 | 7 | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 0 | 95 | 15 | 90 | 95 | 45 | 10 | 0 | 70 | 70 | 0 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 0 | 106 | 17 | 100 | 106 | 50 | 11 | 0 | 78 | 78 | 0 | | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 156 | | | 122 | | | 450 | 469 | 114 | 483 | 453 | 13 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 156 | | | 122 | | | 450 | 469 | 114 | 483 | 453 | 13 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6. | | tC, 2 stage (s) | | | | | | | | | | | | - | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | p0 queue free % | 100 | | | 93 | | | 98 | 100 | 92 | 82 | 100 | 9 | | cM capacity (veh/h) | 1425 | | | 1465 | | | 489 | 458 | 939 | 429 | 468 | 91 | | Direction. Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | .00 | 000 | .20 | | 0. | | Volume Total | 122 | 256 | 89 | 83 | | | | | | | | _ | | Volume Left | 0 | | 11 | 78 | | | | | | | | | | | 17 | 100 | 78 | | | | | | | | | | | Volume Right
cSH | 1425 | 50 | | 6
445 | | | | | | | | | | | | 1465 | 1073 | | | | | | | | | | | Volume to Capacity | 0.00 | 0.07 | 0.08 | 0.19 | | | | | | | | | | Queue Length 95th (ft) | 0 | 5 | 7 | 17 | | | | | | | | | | Control Delay (s) | 0.0 | 3.3 | 9.6 | 14.9 | | | | | | | | | | Lane LOS | | Α | Α | В | | | | | | | | | | Approach Delay (s) | 0.0 | 3.3 | 9.6 | 14.9 | | | | | | | | | | Approach LOS | | | Α | В | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 5.4 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 36.9% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 3: Lake Mary Road & Canyon Boulevard Saturday Peak - Alternative 2 10/12/2010 | o. Lake Mary Road | | , | | | | | | | | |--------------------------|-----------|----------|----------|------|-----------|---------------|----|---|--| | | ۶ | → | • | 4 | - | 4 | | | | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | | Lane Configurations | ሻ | ^ | ^ | 7 | ሻሻ | | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 3435 | | | | | | Flt Permitted | 0.60 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | | Satd. Flow (perm) | 1119 | 1863 | 1863 | 1583 | 3435 | | | | | | Volume (vph) | 20 | 200 | 230 | 240 | 515 | 10 | | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Adj. Flow (vph) | 22 | 222 | 256 | 267 | 572 | 11 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 115 | 4 | 0 | | | | | Lane Group Flow (vph) | 22 | 222 | 256 | 152 | 579 | 0 | | | | | Turn Type | Perm | | | Perm | | | | | | | Protected Phases | | 2 | 6 | | 4 | | | | | | Permitted Phases | 2 | | | 6 | | | | | | | Actuated Green, G (s) | 25.0 | 25.0 | 25.0 | 25.0 | 11.3 | | | | | | Effective Green, q (s) | 25.6 | 25.6 | 25.6 | 25.6 | 11.4 | | | | | | Actuated q/C Ratio | 0.57 | 0.57 | 0.57 | 0.57 | 0.25 | | | | | | Clearance Time (s) | 4.6 | 4.6 | 4.6 | 4.6 | 4.1 | | | | | | Vehicle Extension (s) | 6.1 | 6.1 | 6.1 | 6.1 | 2.0 | | | | | | Lane Grp Cap (vph) | 637 | 1060 | 1060 | 901 | 870 | | | | | | v/s Ratio Prot | | 0.12 | c0.14 | | c0.17 | | | | | | v/s Ratio Perm | 0.02 | | | 0.10 | | | | | | | v/c Ratio | 0.03 | 0.21 | 0.24 | 0.17 | 0.67 | | | | | | Uniform Delay, d1 | 4.3 | 4.7 | 4.8 | 4.6 | 15.1 | | | | | | Progression Factor | 1.00 | 1.00 | 0.41 | 0.81 | 1.00 | | | | | | Incremental Delay, d2 | 0.1 | 0.4 | 0.4 | 0.3 | 1.5 | | | | | | Delay (s) | 4.4 | 5.2 | 2.4 | 4.1 | 16.6 | | | | | | Level of Service | Α | Α | Α | Α | В | | | | | | Approach Delay (s) | | 5.1 | 3.3 | | 16.6 | | | | | | Approach LOS | | Α | Α | | В | | | | | | Intersection Summary | | | | | | | | | | | HCM Average Control D | elay | | 9.4 | H | ICM Lev | el of Service | , | Д | | | HCM Volume to Capaci | ty ratio | | 0.37 | | | | | | | | Actuated Cycle Length (| (s) | | 45.0 | 5 | Sum of Id | ost time (s) | 8. | 0 | | | Intersection Capacity Ut | ilization | | 38.3% | 10 | CU Leve | el of Service | | A | | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 3 HCM Signalized Intersection Capacity Analysis 4: Lake Mary Road & Minaret Road Saturday Peak - Alternative 2 10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | / | > | ļ | 1 | |---|------------|----------|-------|-------|----------|----------|--------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ^ | 7 | ሻ | ^ | 7 | ኘ | <u></u> | 7 | ሻሻ | fà | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | | | Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | |
Satd. Flow (prot) | 1770 | 3539 | 1583 | 1770 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1672 | | | Flt Permitted | 0.37 | 1.00 | 1.00 | 0.32 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 696 | 3539 | 1583 | 590 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1672 | | | Volume (vph) | 115 | 440 | 165 | 80 | 340 | 140 | 400 | 315 | 95 | 535 | 65 | 140 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 128 | 489 | 183 | 89 | 378 | 156 | 444 | 350 | 106 | 594 | 72 | 156 | | RTOR Reduction (vph) | 0 | 0 | 84 | 0 | 0 | 123 | 0 | 0 | 73 | 0 | 86 | 0 | | Lane Group Flow (vph) | 128 | 489 | 99 | 89 | 378 | 33 | 444 | 350 | 33 | 594 | 142 | 0 | | Turn Type | pm+pt | | Perm | pm+pt | | Perm | Split | | Perm | Split | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 8 | 8 | | 7 | 7 | | | Permitted Phases | 2 | | 2 | 6 | | 6 | | | 8 | | | | | Actuated Green, G (s) | 25.6 | 19.6 | 19.6 | 23.2 | 18.4 | 18.4 | 27.1 | 27.1 | 27.1 | 20.0 | 20.0 | | | Effective Green, g (s) | 26.6 | 20.5 | 20.5 | 24.2 | 19.3 | 19.3 | 28.0 | 28.0 | 28.0 | 20.6 | 20.6 | | | Actuated g/C Ratio | 0.30 | 0.23 | 0.23 | 0.27 | 0.21 | 0.21 | 0.31 | 0.31 | 0.31 | 0.23 | 0.23 | | | Clearance Time (s) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 2.5 | 4.7 | 4.7 | 2.5 | 4.6 | 4.6 | 5.2 | 5.2 | 5.2 | 6.2 | 6.2 | | | Lane Grp Cap (vph) | 279 | 806 | 361 | 223 | 759 | 339 | 551 | 580 | 492 | 786 | 383 | | | v/s Ratio Prot | c0.03 | c0.14 | | 0.02 | 0.11 | | c0.25 | 0.19 | | c0.17 | 0.08 | | | v/s Ratio Perm | 0.10 | | 0.06 | 0.09 | | 0.02 | | | 0.02 | | | | | v/c Ratio | 0.46 | 0.61 | 0.27 | 0.40 | 0.50 | 0.10 | 0.81 | 0.60 | 0.07 | 0.76 | 0.37 | | | Uniform Delay, d1 | 24.3 | 31.1 | 28.6 | 25.6 | 31.1 | 28.4 | 28.5 | 26.3 | 21.8 | 32.4 | 29.2 | | | Progression Factor | 0.81 | 0.82 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.7 | 2.9 | 1.6 | 0.9 | 2.3 | 0.6 | 11.9 | 4.6 | 0.3 | 6.7 | 2.7 | | | Delay (s) | 20.5 | 28.5 | 26.3 | 26.4 | 33.4 | 29.0 | 40.4 | 30.9 | 22.1 | 39.0 | 32.0 | | | Level of Service | С | С | С | С | С | С | D | С | С | D | С | | | Approach Delay (s) | | 26.7 | | | 31.3 | | | 34.6 | | | 37.1 | | | Approach LOS | | С | | | С | | | С | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control I | | | 32.6 | H | ICM Le | vel of S | ervice | | С | | | | | HCM Volume to Capac | | | 0.68 | | | | | | | | | | | Actuated Cycle Length | | | 90.0 | 5 | Sum of I | ost time | (s) | | 12.0 | | | | | Intersection Capacity U | tilization | 1 | 64.7% | 10 | CU Leve | el of Se | rvice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 5: Main Street & Mountain Boulevard Saturday Peak - Alternative 2 10/12/2010 | | • | - | • | • | • | • | 1 | Ť | - | / | ţ | 4 | |--------------------------|-----------|------|-------|------|--------|-----------|------|------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 413 | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 25 | 1195 | 60 | 25 | 560 | 85 | 10 | 20 | 15 | 55 | 15 | 60 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 28 | 1328 | 67 | 28 | 622 | 94 | 11 | 22 | 17 | 61 | 17 | 67 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 717 | | | 1394 | | | 1858 | 2189 | 697 | 1472 | 2175 | 358 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 717 | | | 1394 | | | 1858 | 2189 | 697 | 1472 | 2175 | 358 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 97 | | | 94 | | | 58 | 46 | 96 | 0 | 60 | 90 | | cM capacity (veh/h) | 880 | | | 486 | | | 26 | 41 | 383 | 45 | 42 | 638 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total | 692 | 731 | 339 | 406 | 50 | 144 | | | | | | | | Volume Left | 28 | 0 | 28 | 0 | 11 | 61 | | | | | | | | Volume Right | 0 | 67 | 0 | 94 | 17 | 67 | | | | | | | | cSH | 880 | 1700 | 486 | 1700 | 50 | 78 | | | | | | | | Volume to Capacity | 0.03 | 0.43 | 0.06 | 0.24 | 1.01 | 1.85 | | | | | | | | Queue Length 95th (ft) | 2 | 0 | 5 | 0 | 109 | 315 | | | | | | | | Control Delay (s) | 0.8 | 0.0 | 1.9 | 0.0 | 261.0 | 514.4 | | | | | | | | Lane LOS | Α | | Α | | F | F | | | | | | | | Approach Delay (s) | 0.4 | | 0.9 | | 261.0 | 514.4 | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 37.5 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 73.1% | I | CU Lev | el of Sei | vice | | D | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 5 HCM Unsignalized Intersection Capacity Analysis 6: Main Street & Center Street Saturday Peak - Alternative 2 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | <i>></i> | > | ļ | 1 | |--------------------------|-----------|------------|-------|------|------------|-----------|-------|----------|-------------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | ٦ | ↑ ↑ | | ٦ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 55 | 795 | 140 | 65 | 540 | 140 | 65 | 35 | 140 | 100 | 0 | 80 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 61 | 883 | 156 | 72 | 600 | 156 | 72 | 39 | 156 | 111 | 0 | 89 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 1207 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 756 | | | 1039 | | | 1617 | 1983 | 519 | 1561 | 1983 | 37 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 756 | | | 1039 | | | 1617 | 1983 | 519 | 1561 | 1983 | 378 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 93 | | | 89 | | | 0 | 22 | 69 | 0 | 100 | 86 | | cM capacity (veh/h) | 851 | | | 665 | | | 51 | 50 | 501 | 17 | 50 | 620 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 61 | 589 | 450 | 72 | 400 | 356 | 267 | 200 | | | | | | Volume Left | 61 | 0 | 0 | 72 | 0 | 0 | 72 | 111 | | | | | | Volume Right | 0 | 0 | 156 | 0 | 0 | 156 | 156 | 89 | | | | | | cSH | 851 | 1700 | 1700 | 665 | 1700 | 1700 | 107 | 30 | | | | | | Volume to Capacity | 0.07 | 0.35 | 0.26 | 0.11 | 0.24 | 0.21 | 2.50 | 6.75 | | | | | | Queue Length 95th (ft) | 6 | 0 | 0 | 9 | 0 | 0 | 603 | Err | | | | | | Control Delay (s) | 9.6 | 0.0 | 0.0 | 11.1 | 0.0 | 0.0 | 764.2 | Err | | | | | | Lane LOS | Α | | | В | | | F | F | | | | | | Approach Delay (s) | 0.5 | | | 1.0 | | | 764.2 | Err | | | | | | Approach LOS | | | | | | | F | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 920.9 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 60.0% | - 1 | CU Leve | el of Sei | vice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 7: Main Street & Forest Trail Saturday Peak - Alternative 2 10/12/2010 | | • | - | • | • | • | • | 1 | † | / | - | ţ | 4 | |--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ↑ ↑ | | | €\$ | | | 4 | 7 | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 15 | 970 | 15 | 15 | 595 | 70 | 15 | 0 | 20 | 145 | 5 | 35 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 17 | 1078 | 17 | 17 | 661 | 78 | 17 | 0 | 22 | 161 | 6 | 39 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | 1 | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | |
 | | | | | | | | Upstream signal (ft) | | | | | 793 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 739 | | | 1094 | | | 1486 | 1892 | 547 | 1328 | 1861 | 369 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 739 | | | 1094 | | | 1486 | 1892 | 547 | 1328 | 1861 | 369 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 98 | | | 97 | | | 77 | 100 | 95 | 0 | 92 | 94 | | cM capacity (veh/h) | 863 | | | 633 | | | 73 | 66 | 481 | 104 | 69 | 628 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 17 | 719 | 376 | 17 | 441 | 298 | 39 | 206 | | | | | | Volume Left | 17 | 0 | 0 | 17 | 0 | 0 | 17 | 161 | | | | | | Volume Right | 0 | 0 | 17 | 0 | 0 | 78 | 22 | 39 | | | | | | cSH | 863 | 1700 | 1700 | 633 | 1700 | 1700 | 142 | 122 | | | | | | Volume to Capacity | 0.02 | 0.42 | 0.22 | 0.03 | 0.26 | 0.18 | 0.27 | 1.68 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 2 | 0 | 0 | 26 | 386 | | | | | | Control Delay (s) | 9.3 | 0.0 | 0.0 | 10.8 | 0.0 | 0.0 | 39.6 | 402.9 | | | | | | Lane LOS | Α | | | В | | | Е | F | | | | | | Approach Delay (s) | 0.1 | | | 0.2 | | | 39.6 | 402.9 | | | | | | Approach LOS | | | | | | | Е | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 40.1 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 48.9% | I | CU Lev | el of Sei | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 7 HCM Unsignalized Intersection Capacity Analysis 8: Main Street & Laurel Mountain Road Saturday Peak - Alternative 2 10/12/2010 | | - | • | • | - | 1 | / | | | | |--------------------------|-------------|------|-------|----------|---------|-------------|----|---|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | | Lane Configurations | † î> | | ች | ^ | ¥ | | | | | | Sign Control | Free | | | Free | Stop | | | | | | Grade | 0% | | | 0% | 0% | | | | | | Volume (veh/h) | 940 | 140 | 15 | 610 | 80 | 25 | | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Hourly flow rate (vph) | 1044 | 156 | 17 | 678 | 89 | 28 | | | | | Pedestrians | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | Percent Blockage | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | Median type | | | | | None | | | | | | Median storage veh) | | | | | | | | | | | Upstream signal (ft) | | | | 505 | | | | | | | pX, platoon unblocked | | | | | | | | | | | vC, conflicting volume | | | 1200 | | 1494 | 600 | | | | | vC1, stage 1 conf vol | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | vCu, unblocked vol | | | 1200 | | 1494 | 600 | | | | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | | | | tC, 2 stage (s) | | | | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | | | | p0 queue free % | | | 97 | | 20 | 94 | | | | | cM capacity (veh/h) | | | 577 | | 110 | 444 | | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | WB 3 | NB 1 | | | | | Volume Total | 696 | 504 | 17 | 339 | 339 | 117 | | | | | Volume Left | 0 | 0 | 17 | 0 | 0 | 89 | | | | | Volume Right | 0 | 156 | 0 | 0 | 0 | 28 | | | | | cSH | 1700 | 1700 | 577 | 1700 | 1700 | 135 | | | | | Volume to Capacity | 0.41 | 0.30 | 0.03 | 0.20 | 0.20 | 0.87 | | | | | Queue Length 95th (ft) | 0 | 0 | 2 | 0 | 0 | 140 | | | | | Control Delay (s) | 0.0 | 0.0 | 11.4 | 0.0 | 0.0 | 108.4 | | | | | Lane LOS | | | В | | | F | | | | | Approach Delay (s) | 0.0 | | 0.3 | | | 108.4 | | | | | Approach LOS | | | | | | F | | | | | Intersection Summary | | | | | | | | | | | Average Delay | | | 6.4 | | | | | | | | Intersection Capacity Ut | ilization | | 43.1% | - 1 | CU Leve | el of Servi | ce | Α | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 9: Main Street & Old Mammoth Road Saturday Peak - Alternative 2 10/12/2010 | Movement EBT EBR WBL WBT NBL NBR | |--| | Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lane Util. Factor 0.95 1.00 1.00 0.95 1.00 1.00 1.00 Fit 1.00 0.85 1.00 0.95 1.00 0.95 1.00 | | Total Lost time (s) 4.0 4.0 4.0 4.0 4.0 Lane Util. Factor 0.95 1.00 1.00 0.95 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 | | Lane Util. Factor 0.95 1.00 1.00 0.95 1.00 1.00 Frt 1.00 0.85 1.00 1.00 1.00 0.85 Flt Protected 1.00 1.00 0.95 1.00 0.95 1.00 | | Frt 1.00 0.85 1.00 1.00 1.00 0.85
Flt Protected 1.00 1.00 0.95 1.00 0.95 1.00 | | Flt Protected 1.00 1.00 0.95 1.00 0.95 1.00 | | | | Satd. Flow (prot) 3539 1583 1770 3539 1770 1583 | | | | Flt Permitted 1.00 1.00 0.39 1.00 0.95 1.00 | | Satd. Flow (perm) 3539 1583 719 3539 1770 1583 | | Volume (vph) 365 510 85 270 280 65 | | Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 | | Adj. Flow (vph) 406 567 94 300 311 72 | | RTOR Reduction (vph) 0 393 0 0 0 43 | | Lane Group Flow (vph) 406 174 94 300 311 29 | | Turn Type Perm pm+pt Perm | | Protected Phases 2 1 6 3 | | Permitted Phases 2 6 3 | | Actuated Green, G (s) 16.6 16.6 25.2 25.2 22.4 22.4 | | Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 | | Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 | | Clearance Time (s) 4.9 4.1 4.9 4.6 4.6 | | Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 | | Lane Grp Cap (vph) 1085 485 413 1618 713 638 | | v/s Ratio Prot c0.11 c0.02 0.08 c0.18 | | v/s Ratio Perm 0.11 0.09 0.02 | | v/c Ratio 0.37 0.36 0.23 0.19 0.44 0.05 | | Uniform Delay, d1 15.5 15.4 9.2 9.2 12.4 10.4 | | Progression Factor 1.00 1.00 1.00 1.00 1.00 | | Incremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 | | Delay (s) 16.0 16.4 9.4 9.3 14.3 10.5 | | Level of Service B B A A B B | | Approach Delay (s) 16.3 9.3 13.6 | | Approach LOS B A B | | Intersection Summary | | HCM Average Control Delay 14.1 HCM Level of Service | | HCM Volume to Capacity ratio 0.39 | | Actuated Cycle Length (s) 57.1 Sum of lost time (s) | | Intersection Capacity Utilization 43.2% ICU Level of Service | | Analysis Period (min) 15 | | c Critical Lane Group | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 9 HCM Unsignalized Intersection Capacity Analysis 10: Main Street & Sierra Park Boulevard Saturday Peak - Alternative 2 10/12/2010 | | ۶ | → | \rightarrow | • | ← | • | 4 | † | / | - | ļ | 1 | |--------------------------|-----------|------------|---------------|------|------------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ٦ | ↑ ↑ | | ٦ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 355 | 85 | 40 | 295 | 10 | 40 | 10 | 45 | 10 | 10 | 15 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 394 | 94 | 44 | 328 | 11 | 44 | 11 | 50 | 11 | 11 | 17 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | 544 | | | | | | | | | | | | pX, platoon unblocked | | | | 0.95 | | | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | vC, conflicting volume | 339 | | | 489 | | | 739 | 892 | 244 | 697 | 933 | 169 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 339 | | | 412 | | | 675 | 835 | 155 | 631 | 879 | 169 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 99 | | | 96 | | | 85 | 96 | 94 | 96 | 96 | 98 | | cM capacity (veh/h) | 1217 | | | 1088 | | | 295 | 273 | 821 | 305 | 257 | 845 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 11 | 263 | 226 | 44 | 219 | 120 | 106 | 39 | | | | | | Volume Left | 11 | 0 | 0 | 44 | 0 | 0 | 44 | 11 | | | | | | Volume Right | 0 | 0 | 94 | 0 | 0 | 11 | 50 | 17 | | | | | | cSH | 1217 | 1700 | 1700 | 1088 | 1700 | 1700 | 419 | 391 | | | | | | Volume to Capacity | 0.01 | 0.15 | 0.13 | 0.04 | 0.13 | 0.07 | 0.25 | 0.10 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 3 | 0 | 0 | 25 | 8 | | | | | | Control Delay (s) | 8.0 | 0.0 | 0.0 | 8.4 | 0.0 | 0.0 | 16.5 | 15.2 | | | | | | Lane LOS | Α | | | Α | | | С | С | | | | | | Approach Delay (s) | 0.2 | | | 1.0 | | | 16.5 | 15.2 | | | | | | Approach LOS | | | | | | | С | С | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 2.7 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 34.5% | - 1 | CU Leve | el of Ser | vice | | Α |
 | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 11: Tavern Road & Old Mammoth Road Saturday Peak - Alternative 2 10/12/2010 | | • | - | • | • | • | • | 1 | † | - | - | ¥ | 4 | |--------------------------|-----------|------|-------|------|---------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | Ţ | î | | Ĭ | î, | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 5 | 25 | 5 | 5 | 15 | 30 | 390 | 5 | 10 | 660 | 25 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 6 | 28 | 6 | 6 | 17 | 33 | 433 | 6 | 11 | 733 | 28 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 760 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1289 | 1275 | 747 | 1289 | 1286 | 436 | 761 | | | 439 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1289 | 1275 | 747 | 1289 | 1286 | 436 | 761 | | | 439 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 91 | 97 | 93 | 95 | 96 | 97 | 96 | | | 99 | | | | cM capacity (veh/h) | 128 | 159 | 413 | 123 | 156 | 620 | 851 | | | 1121 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 44 | 28 | 33 | 439 | 11 | 761 | | | | | | | | Volume Left | 11 | 6 | 33 | 0 | 11 | 0 | | | | | | | | Volume Right | 28 | 17 | 0 | 6 | 0 | 28 | | | | | | | | cSH | 235 | 258 | 851 | 1700 | 1121 | 1700 | | | | | | | | Volume to Capacity | 0.19 | 0.11 | 0.04 | 0.26 | 0.01 | 0.45 | | | | | | | | Queue Length 95th (ft) | 17 | 9 | 3 | 0 | 1 | 0 | | | | | | | | Control Delay (s) | 23.8 | 20.6 | 9.4 | 0.0 | 8.2 | 0.0 | | | | | | | | Lane LOS | С | С | Α | | Α | | | | | | | | | Approach Delay (s) | 23.8 | 20.6 | 0.7 | | 0.1 | | | | | | | | | Approach LOS | С | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 1.5 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 46.3% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 11 HCM Unsignalized Intersection Capacity Analysis 12: Sierra Nevada Road & Old Mammoth Road Saturday Peak - Alternative 2 10/12/2010 | | ၨ | → | • | • | ← | • | 4 | † | / | > | ļ | 1 | |--------------------------|------------|----------|-------|------|----------|-----------|------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ٦ | 4î | | ٦ | ₽ | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 15 | 80 | 20 | 20 | 30 | 70 | 390 | 5 | 45 | 590 | 45 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 17 | 89 | 22 | 22 | 33 | 78 | 433 | 6 | 50 | 656 | 50 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | 773 | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1414 | 1375 | 681 | 1444 | 1397 | 436 | 706 | | | 439 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1414 | 1375 | 681 | 1444 | 1397 | 436 | 706 | | | 439 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 74 | 87 | 80 | 69 | 82 | 95 | 91 | | | 96 | | | | cM capacity (veh/h) | 85 | 127 | 451 | 72 | 123 | 620 | 893 | | | 1121 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 128 | 78 | 78 | 439 | 50 | 706 | | | | | | | | Volume Left | 22 | 22 | 78 | 0 | 50 | 0 | | | | | | | | Volume Right | 89 | 33 | 0 | 6 | 0 | 50 | | | | | | | | cSH | 216 | 143 | 893 | 1700 | 1121 | 1700 | | | | | | | | Volume to Capacity | 0.59 | 0.54 | 0.09 | 0.26 | 0.04 | 0.42 | | | | | | | | Queue Length 95th (ft) | 83 | 67 | 7 | 0 | 3 | 0 | | | | | | | | Control Delay (s) | 43.1 | 56.9 | 9.4 | 0.0 | 8.4 | 0.0 | | | | | | | | Lane LOS | Е | F | Α | | Α | | | | | | | | | Approach Delay (s) | 43.1 | 56.9 | 1.4 | | 0.6 | | | | | | | | | Approach LOS | Е | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 7.5 | | | | | | | | | | | Intersection Capacity Ut | tilization | 1 | 55.6% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 13: Meridian Boulevard & Majestic Pines Drive Saturday Peak - Alternative 2 10/12/2010 | • | ara a | -, | | | | | | |--------------------------|-----------|------|----------|------|---------|---------|--------| | | • | - | • | • | - | 4 | | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | | 414 | † | | ¥ | | | | Sign Control | | Free | Free | | Stop | | | | Grade | | 0% | 0% | | 0% | | | | Volume (veh/h) | 60 | 435 | 220 | 70 | 50 | 40 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Hourly flow rate (vph) | 67 | 483 | 244 | 78 | 56 | 44 | | | Pedestrians | | | | | | | | | Lane Width (ft) | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | Percent Blockage | | | | | | | | | Right turn flare (veh) | | | | | | | | | Median type | | | | | None | | | | Median storage veh) | | | | | | | | | Upstream signal (ft) | | | | | | | | | pX, platoon unblocked | | | | | | | | | vC, conflicting volume | 322 | | | | 658 | 161 | | | vC1, stage 1 conf vol | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | vCu, unblocked vol | 322 | | | | 658 | 161 | | | tC, single (s) | 4.1 | | | | 6.8 | 6.9 | | | tC, 2 stage (s) | | | | | | | | | tF (s) | 2.2 | | | | 3.5 | 3.3 | | | p0 queue free % | 95 | | | | 85 | 95 | | | cM capacity (veh/h) | 1234 | | | | 376 | 855 | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | SB 1 | | | | Volume Total | 228 | 322 | 163 | 159 | 100 | | | | Volume Left | 67 | 0 | 0 | 0 | 56 | | | | Volume Right | 0 | 0 | 0 | 78 | 44 | | | | cSH | 1234 | 1700 | 1700 | 1700 | 500 | | | | Volume to Capacity | 0.05 | 0.19 | 0.10 | 0.09 | 0.20 | | | | Queue Length 95th (ft) | 4 | 0 | 0 | 0 | 18 | | | | Control Delay (s) | 2.7 | 0.0 | 0.0 | 0.0 | 14.0 | | | | Lane LOS | Α | | | | В | | | | Approach Delay (s) | 1.1 | | 0.0 | | 14.0 | | | | Approach LOS | | | | | В | | | | Intersection Summary | | | | | | | | | Average Delay | | | 2.1 | | | | | | Intersection Capacity Ut | ilization | | 37.3% | I | CU Leve | of Serv | vice A | | Analysis Period (min) | | | 15 | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 13 HCM Signalized Intersection Capacity Analysis 14: Meridian Boulevard & Minaret Road Saturday Peak - Alternative 2 10/12/2010 | | • | - | • | • | ← | • | 4 | † | ~ | - | ļ | 4 | |--------------------------|-----------|------|-------|-------|------------|-----------|--------|----------|------|-------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ħβ | | ሻ | ↑ ↑ | | ሻ | ₽ | | ٦ | 1> | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.96 | | 1.00 | 0.93 | | 1.00 | 0.98 | | 1.00 | 0.98 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3413 | | 1770 | 3304 | | 1770 | 1831 | | 1770 | 1817 | | | Flt Permitted | 0.35 | 1.00 | | 0.42 | 1.00 | | 0.33 | 1.00 | | 0.41 | 1.00 | | | Satd. Flow (perm) | 647 | 3413 | | 781 | 3304 | | 619 | 1831 | | 770 | 1817 | | | Volume (vph) | 140 | 320 | 100 | 35 | 195 | 155 | 55 | 200 | 25 | 330 | 455 | 90 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 156 | 356 | 111 | 39 | 217 | 172 | 61 | 222 | 28 | 367 | 506 | 100 | | RTOR Reduction (vph) | 0 | 32 | 0 | 0 | 135 | 0 | 0 | 5 | 0 | 0 | 8 | 0 | | Lane Group Flow (vph) | 156 | 435 | 0 | 39 | 254 | 0 | 61 | 245 | 0 | 367 | 598 | 0 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | | pm+pt | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 24.2 | 18.4 | | 18.6 | 15.6 | | 25.2 | 22.2 | | 40.9 | 33.8 | | |
Effective Green, g (s) | 25.2 | 19.3 | | 19.6 | 16.5 | | 26.2 | 23.1 | | 41.8 | 34.7 | | | Actuated g/C Ratio | 0.33 | 0.25 | | 0.26 | 0.22 | | 0.34 | 0.30 | | 0.55 | 0.46 | | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | | Vehicle Extension (s) | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | | Lane Grp Cap (vph) | 301 | 864 | | 241 | 715 | | 260 | 555 | | 615 | 827 | | | v/s Ratio Prot | c0.04 | 0.13 | | 0.01 | 0.08 | | 0.01 | 0.13 | | c0.12 | c0.33 | | | v/s Ratio Perm | c0.13 | | | 0.04 | | | 0.07 | | | 0.21 | | | | v/c Ratio | 0.52 | 0.50 | | 0.16 | 0.36 | | 0.23 | 0.44 | | 0.60 | 0.72 | | | Uniform Delay, d1 | 19.0 | 24.3 | | 21.5 | 25.3 | | 17.2 | 21.4 | | 10.5 | 16.8 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.1 | 1.0 | | 0.2 | 0.6 | | 0.3 | 1.2 | | 1.3 | 3.9 | | | Delay (s) | 20.2 | 25.3 | | 21.8 | 26.0 | | 17.5 | 22.5 | | 11.8 | 20.7 | | | Level of Service | С | С | | С | С | | В | С | | В | С | | | Approach Delay (s) | | 24.0 | | | 25.6 | | | 21.6 | | | 17.4 | | | Approach LOS | | С | | | С | | | С | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control D | elay | | 21.2 | H | ICM Le | el of Se | ervice | | С | | | | | HCM Volume to Capaci | ty ratio | | 0.68 | | | | | | | | | | | Actuated Cycle Length (| (s) | | 76.2 | S | Sum of le | ost time | (s) | | 16.0 | | | | | Intersection Capacity Ut | ilization | | 65.9% | 10 | CU Leve | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 15: Meridian Boulevard & Old Mammoth Road Saturday Peak - Alternative 2 10/12/2010 | | • | - | • | 1 | • | • | 1 | † | / | - | ¥ | 4 | |-------------------------|------------|------------|-------|-------|------------|-----------|--------|----------|------|-------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ľ | † } | | ľ | ↑ ↑ | | , J | † | 7 | ٦ | ↑ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 0.98 | | 1.00 | 0.97 | | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1770 | 3457 | | 1770 | 3439 | | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | | Flt Permitted | 0.34 | 1.00 | | 0.17 | 1.00 | | 0.27 | 1.00 | 1.00 | 0.42 | 1.00 | 1.00 | | Satd. Flow (perm) | 626 | 3457 | | 320 | 3439 | | 495 | 1863 | 1583 | 783 | 1863 | 1583 | | Volume (vph) | 185 | 685 | 125 | 105 | 365 | 85 | 140 | 275 | 55 | 130 | 350 | 65 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 206 | 761 | 139 | 117 | 406 | 94 | 156 | 306 | 61 | 144 | 389 | 72 | | RTOR Reduction (vph) | 0 | 17 | 0 | 0 | 22 | 0 | 0 | 0 | 42 | 0 | 0 | 51 | | Lane Group Flow (vph) | 206 | 883 | 0 | 117 | 478 | 0 | 156 | 306 | 19 | 144 | 389 | 21 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | Perm | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | 8 | 4 | | 4 | | Actuated Green, G (s) | 32.7 | 24.9 | | 27.7 | 22.4 | | 27.3 | 21.8 | 21.8 | 25.7 | 21.0 | 21.0 | | Effective Green, g (s) | 33.7 | 25.8 | | 28.7 | 23.3 | | 28.3 | 22.7 | 22.7 | 26.7 | 21.9 | 21.9 | | Actuated g/C Ratio | 0.45 | 0.35 | | 0.38 | 0.31 | | 0.38 | 0.30 | 0.30 | 0.36 | 0.29 | 0.29 | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | | Vehicle Extension (s) | 2.5 | 3.7 | | 2.5 | 3.8 | | 2.5 | 3.8 | 3.8 | 2.5 | 3.8 | 3.8 | | Lane Grp Cap (vph) | 403 | 1194 | | 228 | 1073 | | 283 | 566 | 481 | 343 | 546 | 464 | | v/s Ratio Prot | c0.05 | c0.26 | | 0.04 | 0.14 | | c0.04 | 0.16 | | 0.03 | c0.21 | | | v/s Ratio Perm | 0.18 | | | 0.16 | | | 0.17 | | 0.01 | 0.12 | | 0.01 | | v/c Ratio | 0.51 | 0.74 | | 0.51 | 0.45 | | 0.55 | 0.54 | 0.04 | 0.42 | 0.71 | 0.05 | | Uniform Delay, d1 | 13.2 | 21.5 | | 16.2 | 20.5 | | 16.8 | 21.7 | 18.3 | 17.1 | 23.6 | 18.9 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 0.8 | 2.6 | | 1.5 | 0.4 | | 1.9 | 1.3 | 0.0 | 0.6 | 4.6 | 0.1 | | Delay (s) | 14.0 | 24.1 | | 17.6 | 20.9 | | 18.7 | 22.9 | 18.4 | 17.7 | 28.2 | 19.0 | | Level of Service | В | С | | В | С | | В | С | В | В | С | В | | Approach Delay (s) | | 22.2 | | | 20.3 | | | 21.1 | | | 24.6 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 22.1 | H | ICM Le | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | ity ratio | | 0.71 | | | | | | | | | | | Actuated Cycle Length | (s) | | 74.7 | S | Sum of le | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | | 68.2% | 10 | CU Leve | el of Sei | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 15 HCM Unsignalized Intersection Capacity Analysis 16: Meridian Boulevard & Sierra Park Road | | ۶ | → | • | • | ← | • | 4 | † | / | / | ↓ | 4 | |---------------------------|-----------|----------|-------|-------|----------|-----------|------|------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Stop | | | Stop | | | Volume (vph) | 50 | 150 | 5 | 5 | 145 | 15 | 25 | 5 | 5 | 15 | 5 | 75 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 56 | 167 | 6 | 6 | 161 | 17 | 28 | 6 | 6 | 17 | 6 | 83 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total (vph) | 139 | 89 | 86 | 97 | 39 | 106 | | | | | | | | Volume Left (vph) | 56 | 0 | 6 | 0 | 28 | 17 | | | | | | | | Volume Right (vph) | 0 | 6 | 0 | 17 | 6 | 83 | | | | | | | | Hadj (s) | 0.23 | -0.01 | 0.07 | -0.09 | 0.09 | -0.41 | | | | | | | | Departure Headway (s) | 5.3 | 5.0 | 5.1 | 5.0 | 5.1 | 4.5 | | | | | | | | Degree Utilization, x | 0.20 | 0.12 | 0.12 | 0.13 | 0.05 | 0.13 | | | | | | | | Capacity (veh/h) | 664 | 690 | 669 | 692 | 653 | 737 | | | | | | | | Control Delay (s) | 8.4 | 7.5 | 7.7 | 7.6 | 8.4 | 8.2 | | | | | | | | Approach Delay (s) | 8.1 | | 7.6 | | 8.4 | 8.2 | | | | | | | | Approach LOS | Α | | Α | | Α | Α | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Delay | | | 8.0 | | | | | | | | | | | HCM Level of Service | | | Α | | | | | | | | | | | Intersection Capacity Uti | ilization | | 26.9% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 17: Chateau Road & Old Mammoth Road Saturday Peak - Alternative 2 10/12/2010 | | ۶ | - | • | • | • | • | 1 | † | - | - | ţ | 4 | |--------------------------|-----------|------|-------|------|---------|----------|-------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | Ţ | f) | | J. | ĵ» | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 30 | 30 | 10 | 10 | 20 | 55 | 10 | 285 | 10 | 95 | 345 | 70 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 33 | 33 | 11 | 11 | 22 | 61 | 11 | 317 | 11 | 106 | 383 | 78 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 1037 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1044 | 983 | 422 | 967 | 1017 | 322 | 461 | | | 328 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1044 | 983 | 422 | 967 | 1017 | 322 | 461 | | | 328 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 79 | 85 | 98 | 94 | 90 | 91 | 99 | | | 91 | | | | cM capacity (veh/h) | 162 | 225 | 631 | 189 | 215 | 719 | 1100 | | | 1232 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 78 | 94 | 11 | 328 | 106 | 461 | | | | | | | | Volume Left | 33 | 11 | 11 | 0 | 106 | 0 | | | | | | | | Volume Right | 11 | 61 | 0 | 11 | 0 | 78 | | | | | | | | cSH | 209 | 382 | 1100 | 1700 | 1232 | 1700 | | | | | | | | Volume to Capacity | 0.37 | 0.25 | 0.01 | 0.19 | 0.09 | 0.27 | | | | | | | | Queue Length 95th (ft) | 40 | 24 | 1 | 0 | 7 | 0 | | | | | | | | Control Delay (s) | 32.0 | 17.5 | 8.3 | 0.0 | 8.2 | 0.0 | | | | | | | | Lane LOS | D | С | Α | | Α | | | | | | | | | Approach Delay (s) | 32.0 | 17.5 | 0.3 | | 1.5 |
 | | | | | | | Approach LOS | D | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 4.7 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 45.8% | 10 | CU Leve | el of Se | rvice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 17 HCM Unsignalized Intersection Capacity Analysis 18: Old Mammoth Road & Minaret Road Saturday Peak - Alternative 2 10/12/2010 | 105
0.90
117 | Free
0%
160 | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | |--------------------|---|--|---|--|--|--|--|--|-------------------------------|--|--------| | 105
0.90 | Free
0%
160 | | ሻ | î» | | | | | | | יוסטוי | | 0.90 | 0%
160 | | | | | | 4 | 7 | ሻ | ₽ | | | 0.90 | 160 | | | Free | | | Stop | | | Stop | | | 0.90 | | | | 0% | | | 0% | | | 0% | | | | 0.00 | 40 | 125 | 180 | 90 | 20 | 65 | 85 | 95 | 145 | 19 | | 117 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | | 178 | 44 | 139 | 200 | 100 | 22 | 72 | 94 | 106 | 161 | 21 | 2 | | | | | | | | | | | | None | | | None | 300 | | | 222 | | | 1208 | 1011 | 200 | 1022 | 983 | 25 | 300 | | | 222 | | | 1208 | 1011 | 200 | 1022 | 983 | 25 | | | | | | | | | | | | | 6. | | | | | | | | • • • • | 0.0 | 0.2 | | 0.0 | 0 | | 22 | | | 22 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | | | | | | | | | | | | 7: | | | | | | | | | | | | | 78 | | - | ED 0 | 14/D 4 | - | ND 4 | 00.4 | | 100 | 011 | | 202 | 70 | - | | | - | - | | | | | | | | | | | | 0.0 | | 0.0 | | | | | | | | | | | | | | _ | | г | | | | | | | 2.8 | | 2.5 | | | | | | | | | | | | | | | E | F | ization | | , - | 10 | CU Leve | el of Ser | vice | | Α | | | | | | | 15 | | | | | | | | | | | | 300
4.1
2.2
91
1261
117
0
1261
0.09
8
8.1
A
2.8 | 300
4.1
2.2
91
1261
EB 1 EB 2
117 222
117 0
0 44
1261 1700
0.09 0.13
8 0
8.1 0.0
A
2.8 | 300
4.1
2.2
91
1261
EB 1 EB 2 WB 1
117 222 139
117 0 139
0 44 0
1261 1700 1347
0.09 0.13 0.10
8 0 9
8.1 0.0 8.0
A A
2.8 2.5
43.5
zation 51.6% | 300 222 4.1 4.1 2.2 2.2 91 90 1261 1347 EB 1 EB 2 WB 1 WB 2 117 222 139 300 117 0 139 0 0 44 0 100 0.09 0.13 0.10 0.18 8 0 9 0 141 0.0 8.0 0.0 A A 2.8 2.5 43.5 zation 51.6% 16 | 300 222 4.1 4.1 2.2 2.2 91 90 1261 1347 EB 1 EB 2 WB 1 WB 2 NB 1 117 222 139 300 189 117 0 139 0 22 0 44 0 100 94 1261 1700 1347 1700 266 0.09 0.13 0.10 0.18 0.71 8 0 9 0 122 8.1 0.0 8.0 0.0 46.0 A A A E 2.8 2.5 46.0 E 43.5 zation 51.6% ICU Leve | 300 222 4.1 4.1 2.2 2.2 91 90 1261 1347 EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 117 222 139 300 189 106 117 0 139 0 22 106 0 44 0 100 94 0 1261 1700 1347 1700 266 117 0.09 0.13 0.10 0.18 0.71 0.90 8 0 9 0 122 140 8.1 0.0 8.0 0.0 46.0 126.9 A A A E F 2.8 2.5 46.0 108.3 E F 43.5 zation 51.6% ICU Level of Ser | 300 222 1208 4.1 4.1 7.1 2.2 2.2 3.5 91 90 36 1261 1347 35 EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 SB 2 117 222 139 300 189 106 378 117 0 139 0 22 106 0 0 44 0 100 94 0 217 1261 1700 1347 1700 266 117 353 0.09 0.13 0.10 0.18 0.71 0.90 1.07 8 0 9 0 122 140 339 8.1 0.0 8.0 0.0 46.0 126.9 103.0 A A A E F F F 2.8 2.5 46.0 108.3 E F | 300 222 1208 1011 300 222 1208 1011 4.1 4.1 7.1 6.5 2.2 2.2 3.5 4.0 91 90 36 63 1261 1347 35 195 EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 SB 2 117 222 139 300 189 106 378 117 0 139 0 22 106 0 0 44 0 100 94 0 217 1261 1700 1347 1700 266 117 353 0.09 0.13 0.10 0.18 0.71 0.90 1.07 8 0 9 0 122 140 339 8.1 0.0 8.0 0.0 46.0 126.9 103.0 A A A E F F 2.8 2.5 46.0 108.3 E F | 300 222 1208 1011 200 | 300 222 1208 1011 200 1022 300 222 1208 1011 200 1022 4.1 4.1 7.1 6.5 6.2 7.1 2.2 2.2 3.5 4.0 3.3 3.5 91 90 36 63 89 10 1261 1347 35 195 841 117 EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 SB 2 117 222 139 300 189 106 378 117 0 139 0 22 106 0 0 44 0 100 94 0 217 1261 1700 1347 1700 266 117 353 0.09 0.13 0.10 0.18 0.71 0.90 1.07 8 0 9 0 122 140 339 8.1 0.0 8.0 0.0 46.0 126.9 103.0 A A A E F F 2.8 2.5 46.0 108.3 E F | None | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. # Future - Alternative 3 LOS Reports HCM Unsignalized Intersection Capacity Analysis 1: Forest Trail & Minaret Road Saturday Peak - Alternative 3 10/12/2010 Page 1 | Movement | | ۶ | - | • | • | ← | • | 4 | † | / | - | ļ | 4 | |---|--------------------------|------------|-------|-------|------|----------|-----------|------|----------|----------|------|------|------| | Sign Control Stop Stop Free Grade O% O% O% O% O% O% O% O | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Grade | Lane Configurations | | 4 | | | 4 | | | 4 | | | 4 | | | Volume (veh/h) | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Peak Hour Factor | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Hourly flow rate (vph) 22 39 111 22 22 17 83 211 39 100 817 122 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type | Volume (veh/h) | 20 | 35 | 100 | 20 | 20 | 15 | 75 | 190 | 35 | 90 | 735 | 110 | | Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage
veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, single (s) | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC4, stage 2 conf vol vC4, stage 2 conf vol vC5, stage 2 conf vol vC6, single (s) T1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 T1 7.2 8.8 8.9 92 T1 8.8 9.9 92 T1 8.8 9.9 92 T1 8.8 9.9 92 T2 8.8 9.9 92 T2 8.8 9.9 92 T2 8.8 9.9 92 T2 8.8 9.9 92 T3 | Hourly flow rate (vph) | 22 | 39 | 111 | 22 | 22 | 17 | 83 | 211 | 39 | 100 | 817 | 122 | | Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) Dyx, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, stage 1 conf vol vC4, single (s) T, 1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 T, 2 stage (s) F (s) T, 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 PO queue free % G 68 61 68 37 77 98 89 92 CM capacity (veh/h) G 9 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total T, 2 61 333 1039 Volume Right T 111 17 39 122 CSH Volume Right T 111 17 39 122 CSH Control Delay (s) T, 2 3.7 2.0 Lane LOS F F F A A A Approach LOS F F F Intersection Summary Average Delay Intersection Capacity Utilization T, 5 w None None None None None None None None | Pedestrians | | | | | | | | | | | | | | Percent Blockage Right turn flare (veh) None None Median type None None Median storage veh) Upstream signal (ft) Pytatoon unblocked voc, conflicting volume 1503 1494 878 1606 1536 231 939 250 vC1, stage 1 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vc2, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tf (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 3 1316 3 1316 3 1316 3 1316 3 < | Lane Width (ft) | | | | | | | | | | | | | | Right turn flare (veh) Median type | Walking Speed (ft/s) | | | | | | | | | | | | | | Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1503 1494 878 1606 1536 231 939 250 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) T.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 4.2 | Percent Blockage | | | | | | | | | | | | | | Median storage veh) Upstream signal (ft) pX, platoon unblocked vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC, stage 1 tC, stage 2 conf vol vC2, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC, stage 1 0.0 1.0 1.0 1.0 1.1 4. | Right turn flare (veh) | | | | | | | | | | | | | | Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol tC, single (s) | Median type | | None | | | None | | | | | | | | | pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC5, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC7, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 pO queue free % 68 61 68 37 77 98 89 92 cM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 | Median storage veh) | | | | | | | | | | | | | | VC, conflicting volume | Upstream signal (ft) | | | | | | | | | | | | | | vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 68 61 68 37 77 98 89 92 cM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 172 61 333 1039 Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach Delay (s) 132.1 179.2 3.7 2.0 Intersection Summary Average Delay Intersection Capacity Utilization 71.5% ICU Level of Service C | pX, platoon unblocked | | | | | | | | | | | | | | VCQ, stage 2 conf vol VCQ, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 68 61 68 37 77 98 89 92 cM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 172 61 333 1039 Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A A Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | vC, conflicting volume | 1503 | 1494 | 878 | 1606 | 1536 | 231 | 939 | | | 250 | | | | vCu, unblocked vol 1503 1494 878 1606 1536 231 939 250 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 68 61 68 37 77 98 89 92 cM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 172 61 333 1039 Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F F A A Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | vC1, stage 1 conf vol | | | | | | | | | | | | | | tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 68 61 68 37 77 98 89 92 cM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 172 61 333 1039 Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | vC2, stage 2 conf vol | | | | | | | | | | | | | | tC, 2 stage (s) tF (s) | vCu, unblocked vol | 1503 | 1494 | 878 | 1606 | 1536 | 231 | 939 | | | 250 | | | | tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 68 61 68 37 77 98 89 92 cM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 172 61 333 1039 Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | p0 queue free % 68 61 68 37 77 98 89 92 cM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 | tC, 2 stage (s) | | | | | | | | | | | | | | CM capacity (veh/h) 69 101 347 35 95 809 730 1316 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 172 61 333 1039 Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | | | 2.2 | | | | Direction, Lane # EB 1 WB 1 NB 1 SB 1 | p0 queue free % | 68 | 61 | 68 | 37 | 77 | 98 | 89 | | | 92 | | | | Volume Total 172 61 333 1039 Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach LOS F F F Average Los F F F Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | cM capacity (veh/h) | 69 | 101 | 347 | 35 | 95 | 809 | 730 | | | 1316 | | | | Volume Left 22 22 83 100 Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Right 111 17 39 122 cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Volume Total | 172 | 61 | 333 | 1039 | | | | | | | | | | cSH 168 69 730 1316 Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0
Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Volume Left | 22 | 22 | 83 | 100 | | | | | | | | | | Volume to Capacity 1.03 0.89 0.11 0.08 Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Volume Right | 111 | 17 | 39 | 122 | | | | | | | | | | Queue Length 95th (ft) 208 108 10 6 Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | cSH | 168 | 69 | 730 | 1316 | | | | | | | | | | Control Delay (s) 132.1 179.2 3.7 2.0 Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Volume to Capacity | 1.03 | 0.89 | 0.11 | 0.08 | | | | | | | | | | Lane LOS F F A A Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Queue Length 95th (ft) | 208 | 108 | 10 | 6 | | | | | | | | | | Approach Delay (s) 132.1 179.2 3.7 2.0 Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Control Delay (s) | 132.1 | 179.2 | 3.7 | 2.0 | | | | | | | | | | Approach LOS F F Intersection Summary Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Lane LOS | F | F | Α | Α | | | | | | | | | | Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Approach Delay (s) | 132.1 | 179.2 | 3.7 | 2.0 | | | | | | | | | | Average Delay 23.0 Intersection Capacity Utilization 71.5% ICU Level of Service C | Approach LOS | F | F | | | | | | | | | | | | Intersection Capacity Utilization 71.5% ICU Level of Service C | Intersection Summary | | | | | | | | | | | | | | | Average Delay | | | | | | | | | | | | | | Analysis Period (min) 15 | Intersection Capacity Ut | tilizatior | 1 | 71.5% | 10 | CU Lev | el of Ser | vice | | С | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) HCM Unsignalized Intersection Capacity Analysis Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 2: Lake Mary Road & Davidson Saturday Peak - Alternative 3 10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | / | - | ţ | 4 | |--------------------------|-----------|------|-------|------|----------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | | 4 | | | 4 | | | 4 | 7 | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 0 | 100 | 15 | 85 | 100 | 45 | 10 | 0 | 70 | 65 | 0 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 0 | 111 | 17 | 94 | 111 | 50 | 11 | 0 | 78 | 72 | 0 | (| | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 161 | | | 128 | | | 450 | 469 | 119 | 483 | 453 | 136 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 161 | | | 128 | | | 450 | 469 | 119 | 483 | 453 | 136 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 100 | | | 94 | | | 98 | 100 | 92 | 83 | 100 | 99 | | cM capacity (veh/h) | 1418 | | | 1458 | | | 491 | 460 | 932 | 430 | 470 | 913 | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 128 | 256 | 89 | 78 | | | | | | | | | | Volume Left | 0 | 94 | 11 | 72 | | | | | | | | | | Volume Right | 17 | 50 | 78 | 6 | | | | | | | | | | cSH | 1418 | 1458 | 1065 | 447 | | | | | | | | | | Volume to Capacity | 0.00 | 0.06 | 0.08 | 0.17 | | | | | | | | | | Queue Length 95th (ft) | 0 | 5 | 7 | 16 | | | | | | | | | | Control Delay (s) | 0.0 | 3.2 | 9.6 | 14.7 | | | | | | | | | | Lane LOS | | Α | Α | В | | | | | | | | | | Approach Delay (s) | 0.0 | 3.2 | 9.6 | 14.7 | | | | | | | | | | Approach LOS | | | Α | В | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 5.1 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 36.6% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 3: Lake Mary Road & Canyon Boulevard Saturday Peak - Alternative 3 ____10/12/2010 | | • | - | • | • | - | ∢ | | | |--------------------------|-------|---------|---------|------|-----------|----------------|-----|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | ሻ | <u></u> | <u></u> | 7 | ሻሻ | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 3431 | | | | | Flt Permitted | 0.59 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1108 | 1863 | 1863 | 1583 | 3431 | | | | | Volume (vph) | 20 | 210 | 240 | 240 | 505 | 15 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 22 | 233 | 267 | 267 | 561 | 17 | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 115 | 6 | 0 | | | | Lane Group Flow (vph) | 22 | 233 | 267 | 152 | 572 | 0 | | | | Turn Type | Perm | | | Perm | | | | | | Protected Phases | | 2 | 6 | | 4 | | | | | Permitted Phases | 2 | | | 6 | | | | | | Actuated Green, G (s) | 25.0 | 25.0 | 25.0 | 25.0 | 11.3 | | | | | Effective Green, q (s) | 25.6 | 25.6 | 25.6 | 25.6 | 11.4 | | | | | Actuated g/C Ratio | 0.57 | 0.57 | 0.57 | 0.57 | 0.25 | | | | | Clearance Time (s) | 4.6 | 4.6 | 4.6 | 4.6 | 4.1 | | | | | Vehicle Extension (s) | 6.1 | 6.1 | 6.1 | 6.1 | 2.0 | | | | | Lane Grp Cap (vph) | 630 | 1060 | 1060 | 901 | 869 | | | | | v/s Ratio Prot | | 0.13 | c0.14 | | c0.17 | | | | | v/s Ratio Perm | 0.02 | | | 0.10 | | | | | | v/c Ratio | 0.03 | 0.22 | 0.25 | 0.17 | 0.66 | | | | | Uniform Delay, d1 | 4.3 | 4.8 | 4.9 | 4.6 | 15.1 | | | | | Progression Factor | 1.00 | 1.00 | 0.43 | 0.83 | 1.00 | | | | | Incremental Delay, d2 | 0.1 | 0.5 | 0.4 | 0.3 | 1.4 | | | | | Delay (s) | 4.4 | 5.3 | 2.5 | 4.2 | 16.4 | | | | | Level of Service | Α | Α | Α | Α | В | | | | | Approach Delay (s) | | 5.2 | 3.3 | | 16.4 | | | | | Approach LOS | | Α | Α | | В | | | | | Intersection Summary | | | | | | | | | | HCM Average Control D | Delay | | 9.2 | F | ICM Lev | vel of Service | Α | | | HCM Volume to Capaci | | | 0.38 | | | | | | | Actuated Cycle Length | | | 45.0 | | Sum of Id | ost time (s) | 8.0 | | | Intersection Capacity Ut | | | 38.2% | | | | Α | | | Analysis Period (min) | | | 15 | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 3 HCM Signalized Intersection Capacity Analysis 4: Lake Mary Road & Minaret Road | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |-------------------------|------------|----------|-------|-------|----------|----------|--------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ٦ | ^ | 7 | ٦ | ^ | 7 | J. | † | 7 | ሻሻ | f) | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | | | Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3539 | 1583 | 1770 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1672 | | | Flt Permitted | 0.37 | 1.00 | 1.00 | 0.31 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 686 | 3539 | 1583 | 581 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1672 | | | Volume (vph) | 115 | 445 | 160 | 80 | 345 | 145 | 395 | 315 | 95 | 545 | 65 | 140 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 128 | 494 | 178 | 89 | 383 | 161 | 439 | 350 | 106 | 606 | 72 | 156 | | RTOR Reduction (vph) | 0 | 0 | 81 | 0 | 0 | 126 | 0 | 0 | 73 | 0 | 86 | 0 | | Lane Group Flow (vph) | 128 | 494 | 97 | 89 | 383 | 35 | 439 | 350 | 33 | 606 | 142 | 0 | | Turn Type | pm+pt | | Perm | pm+pt | | Perm | Split | | Perm | Split | | | | Protected Phases | 5 | 2 | | 1 | 6 | | . 8 | 8 | | 7 | 7 | | | Permitted Phases | 2 | | 2 | 6 | | 6 | | | 8 | | | | | Actuated Green, G (s) | 25.6 | 19.6 | 19.6 | 23.2 | 18.4 | 18.4 | 27.1 | 27.1 | 27.1 | 20.0 | 20.0 | | | Effective Green, g (s) | 26.6 |
20.5 | 20.5 | 24.2 | 19.3 | 19.3 | 28.0 | 28.0 | 28.0 | 20.6 | 20.6 | | | Actuated g/C Ratio | 0.30 | 0.23 | 0.23 | 0.27 | 0.21 | 0.21 | 0.31 | 0.31 | 0.31 | 0.23 | 0.23 | | | Clearance Time (s) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 2.5 | 4.7 | 4.7 | 2.5 | 4.6 | 4.6 | 5.2 | 5.2 | 5.2 | 6.2 | 6.2 | | | Lane Grp Cap (vph) | 276 | 806 | 361 | 221 | 759 | 339 | 551 | 580 | 492 | 786 | 383 | | | v/s Ratio Prot | c0.03 | c0.14 | | 0.02 | 0.11 | | c0.25 | 0.19 | | c0.18 | 0.08 | | | v/s Ratio Perm | 0.11 | | 0.06 | 0.09 | | 0.02 | | | 0.02 | | | | | v/c Ratio | 0.46 | 0.61 | 0.27 | 0.40 | 0.50 | 0.10 | 0.80 | 0.60 | 0.07 | 0.77 | 0.37 | | | Uniform Delay, d1 | 24.3 | 31.2 | 28.6 | 25.6 | 31.1 | 28.4 | 28.4 | 26.3 | 21.8 | 32.5 | 29.2 | | | Progression Factor | 0.82 | 0.83 | 0.87 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.8 | 3.0 | 1.6 | 0.9 | 2.4 | 0.6 | 11.4 | 4.6 | 0.3 | 7.2 | 2.7 | | | Delay (s) | 20.8 | 28.9 | 26.4 | 26.5 | 33.5 | 29.0 | 39.8 | 30.9 | 22.1 | 39.7 | 32.0 | | | Level of Service | С | С | С | С | С | С | D | С | С | D | С | | | Approach Delay (s) | | 27.1 | | | 31.4 | | | 34.2 | | | 37.6 | | | Approach LOS | | С | | | С | | | С | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 32.7 | H | ICM Le | vel of S | ervice | | С | | | | | HCM Volume to Capaci | ity ratio | | 0.69 | | | | | | | | | | | Actuated Cycle Length | (s) | | 90.0 | 5 | Sum of I | ost time | (s) | | 12.0 | | | | | Intersection Capacity U | tilizatior | 1 | 64.5% | 10 | CU Leve | el of Se | rvice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 5: Main Street & Mountain Boulevard Saturday Peak - Alternative 3 10/12/2010 | | • | → | • | € | - | • | 1 | † | / | - | ţ | 4 | |--------------------------|-----------|----------|-------|------|--------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 25 | 1215 | 65 | 25 | 570 | 85 | 10 | 25 | 20 | 60 | 15 | 60 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 28 | 1350 | 72 | 28 | 633 | 94 | 11 | 28 | 22 | 67 | 17 | 67 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 728 | | | 1422 | | | 1889 | 2225 | 711 | 1503 | 2214 | 364 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 728 | | | 1422 | | | 1889 | 2225 | 711 | 1503 | 2214 | 364 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 97 | | | 94 | | | 54 | 29 | 94 | 0 | 58 | 89 | | cM capacity (veh/h) | 872 | | | 475 | | | 24 | 39 | 375 | 31 | 39 | 633 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total | 703 | 747 | 344 | 411 | 61 | 150 | | | | | | | | Volume Left | 28 | 0 | 28 | 0 | 11 | 67 | | | | | | | | Volume Right | 0 | 72 | 0 | 94 | 22 | 67 | | | | | | | | cSH | 872 | 1700 | 475 | 1700 | 49 | 56 | | | | | | | | Volume to Capacity | 0.03 | 0.44 | 0.06 | 0.24 | 1.23 | 2.67 | | | | | | | | Queue Length 95th (ft) | 2 | 0 | 5 | 0 | 139 | 384 | | | | | | | | Control Delay (s) | 0.8 | 0.0 | 1.9 | 0.0 | 338.3 | 910.4 | | | | | | | | Lane LOS | Α | | Α | | F | F | | | | | | | | Approach Delay (s) | 0.4 | | 0.9 | | 338.3 | 910.4 | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 65.6 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 74.7% | I | CU Lev | el of Sei | vice | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | , | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 5 HCM Unsignalized Intersection Capacity Analysis 6: Main Street & Center Street Saturday Peak - Alternative 3 10/12/2010 | ۶ | → | \rightarrow | • | • | • | 4 | † | <i>></i> | - | ļ | 1 | |-----------|---|---------------|--|--|---|------------------------------|---|---|--|--|---| | EBL | EBT | EBR | WBL | WBT | WBR | NBL |
NBT | NBR | SBL | SBT | SBF | | ٦ | ↑ ↑ | | ٦ | ↑ ↑ | | | 4 | | | 4 | | | | Free | | | Free | | | Stop | | | Stop | | | | 0% | | | 0% | | | 0% | | | 0% | | | 70 | 940 | 95 | 40 | 635 | 55 | 40 | 10 | 90 | 40 | 0 | 3 | | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | 78 | 1044 | 106 | 44 | 706 | 61 | 44 | 11 | 100 | 44 | 0 | 3 | None | | | None | 1207 | 767 | | | 1150 | | | 1733 | 2108 | 575 | 1608 | 2131 | 38 | 767 | | | 1150 | | | 1733 | 2108 | 575 | 1608 | 2131 | 38 | | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6. | | | | | | | | | | | | | | | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | 91 | | | 93 | | | 4 | 74 | 78 | 0 | 100 | 9 | | 843 | | | 603 | | | 46 | 43 | 461 | 39 | 41 | 61 | | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | 78 | 696 | 454 | 44 | 470 | 296 | 156 | 83 | | | | | | 78 | 0 | 0 | 44 | 0 | 0 | 44 | 44 | | | | | | 0 | 0 | 106 | 0 | 0 | 61 | 100 | 39 | | | | | | 843 | 1700 | 1700 | 603 | 1700 | 1700 | 108 | 69 | | | | | | 0.09 | 0.41 | 0.27 | 0.07 | 0.28 | 0.17 | 1.44 | 1.21 | - | | | | | | | | | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | 0.0 | | | F | F | 32.3 | | | | | | | | | | | ilization | | | - 1 | CU Leve | el of Se | rvice | | Α | | | | | | | 15 | | | | | | - ' ' | | | | | | 767 767 767 4.1 2.2 91 843 EB.1 78 0 843 0.09 8 9.7 A 0.6 | Tebl. EBT | THE THE TEBE | THE TOTAL STATE OF STA | EBL EBT EBR WBL WBT Free 0% 0% 0% 70 940 95 40 635 0.90 0.90 0.90 0.90 0.90 78 1044 106 44 706 767 1150 767 1150 767 1150 767 1150 768 0 44 4 106 4 470 78 0 0 44 4 00 8 43 1700 1700 603 1700 0.09 0.41 0.27 0.07 0.28 8 0 0 6 0 9.7 0.0 0.0 11.4 0.0 A B 0.6 0.6 | EBL EBT EBR WBL WBT WBR Free | BBL BBT BBR WBL WBT WBR NBL | EBL EBT EBR WBL WBT WBR NBL NBT | EBL EBT EBR WBL WBT WBR NBL NBT NBR Free Free Stop 0% 0% 0% 0% 70 940 95 40 635 55 40 10 90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 | EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL Free Free Stop 0% 0% 0% 0% 70 940 95 40 635 55 40 10 90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 | EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Free Free Stop Stop 0% 0% 0% 0% 0% 70 940 95 40 635 55 40 10 90 40 0 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 7: Main Street & Forest Trail Saturday Peak - Alternative 3 10/12/2010 | | • | - | • | • | — | • | 1 | † | / | - | ţ | 4 | |--------------------------|-----------|-------------|-------|------|-------------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † 1> | | ሻ | † î> | | | - € | | | 4 | 7 | | Sign Control | · | Free | | · | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 1055 | 15 | 15 | 650 | 65 | 15 | 0 | 20 | 130 | 5 | 35 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 1172 | 17 | 17 | 722 | 72 | 17 | 0 | 22 | 144 | 6 | 39 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | 1 | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 793 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 794 | | | 1189 | | | 1622 | 2053 | 594 | 1444 | 2025 | 397 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 794 | | | 1189 | | | 1622 | 2053 | 594 | 1444 | 2025 | 397 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 97 | | | 97 | | | 70 | 100 | 95 | 0 | 90 | 94 | | cM capacity (veh/h) | 823 | | | 583 | | | 56 | 52 | 448 | 84 | 54 | 602 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 22 | 781 | 407 | 17 | 481 | 313 | 39 | 189 | | | | | | Volume Left | 22 | 0 | 0 | 17 | 0 | 0 | 17 | 144 | | | | | | Volume Right | 0 | 0 | 17 | 0 | 0 | 72 | 22 | 39 | | | | | | cSH | 823 | 1700 | 1700 | 583 | 1700 | 1700 | 113 | 101 | | | | | | Volume to Capacity | 0.03 | 0.46 | 0.24 | 0.03 | 0.28 | 0.18 | 0.35 | 1.88 | | | | | | Queue Length 95th (ft) | 2 | 0 | 0 | 2 | 0 | 0 | 34 | 389 | | | | | | Control Delay (s) | 9.5 | 0.0 | 0.0 | 11.4 | 0.0 | 0.0 | 52.9 | 500.1 | | | | | | Lane LOS | Α | | | В | | | F | F | | | | | | Approach Delay (s) | 0.2 | | | 0.2 | | | 52.9 | 500.1 | | | | | | Approach LOS | | | | | | | F | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 43.1 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 50.4% | I | CU Lev | el of Sei | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 7 HCM Unsignalized Intersection Capacity Analysis 8: Main Street & Laurel Mountain Road Saturday Peak - Alternative 3 10/12/2010 | | - | • | • | - | 4 | / | | | | | |--------------------------|-------------|------|-------|----------|--------|-------------|---|---|---|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | | | Lane Configurations | † 1> | | ች | ^ | ¥ | | | | | | | Sign Control | Free | | | Free | Stop | | | | | | | Grade | 0% | | | 0% | 0% | | | | | | | Volume (veh/h) | 945 | 150 | 15 | 615 | 85 | 25 | | | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | | Hourly flow rate (vph) | 1050 | 167 | 17 | 683 | 94 | 28 | | | | | | Pedestrians | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | Median type | | | | | None | | | | | | | Median storage veh) | | | | | | | | | | | | Upstream signal (ft) | | | | 505 | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | vC, conflicting volume | | | 1217 | | 1508 | 608 | | | | | | vC1, stage 1 conf vol | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | vCu, unblocked vol | | | 1217 | | 1508 | 608 | | | | | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | | | | | tC, 2 stage (s) | | | | | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | | | | | p0 queue free % | | | 97 | | 13 | 94 | | | | | | cM capacity (veh/h) | | | 569 | | 108 | 439 | | | | | | Direction, Lane # | EB 1 | EB 2 | | WB 2 | WB 3 | NB 1 | | | | | | Volume Total | 700 | 517 | 17 | 342 | 342 | 122 | | | | | | Volume Left | 0 | 0 | 17 | 0 | 0 | 94 | | | | | | Volume Right | 0 | 167 | 0 | 0 | 0 | 28 | | | | | | cSH | 1700 | 1700 | 569 | 1700 | 1700 | 130 | | | | | | Volume to Capacity | 0.41 | 0.30 | 0.03 | 0.20 | 0.20 | 0.94 | | | | | | Queue Length 95th (ft) | 0 | 0 | 2 | 0 | 0 | 157 | | | | | | Control Delay (s) | 0.0 | 0.0 | 11.5 | 0.0 | 0.0 | 127.2 | | | | | | Lane LOS | | | В | | | F | | | | | | Approach Delay (s) | 0.0 | | 0.3 | | | 127.2 | | | | | | Approach LOS | | | | | | F | | | | | | Intersection Summary | | | | | | | | | | | | Average Delay | | | 7.7 | | | | | | | | | Intersection Capacity Ut | ilization | | 43.8% | - 1 | CU Lev | el of Servi | е | F | 4 | | | Analysis Period (min) | | | 15 | | | | | | | | | , , | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 9: Main Street & Old Mammoth Road Saturday Peak - Alternative 3 ____10/12/2010 | | \rightarrow | • | • | • | 1 | / | | | |--------------------------|---------------|------|-------|------------------------|-----------|----------------|------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | ^ | 7 | ሻ | ^ ^ | ሻ | 7 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | Lane Util. Factor | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | | | Frt | 1.00 | 0.85 | 1.00 | 1.00 | 1.00 | 0.85 | | | | Flt Protected | 1.00 | 1.00 | 0.95 | 1.00 | 0.95 | 1.00 | | | | Satd. Flow (prot) | 3539 | 1583 | 1770 | 3539 | 1770 | 1583 | | | | Flt Permitted | 1.00 | 1.00 | 0.39 | 1.00 | 0.95 | 1.00 | | | | Satd. Flow (perm) | 3539 | 1583 | 728 | 3539 | 1770 | 1583 | | | | Volume (vph) | 360 | 490 | 85 | 265 | 270 | 65 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 400 | 544 | 94 | 294 | 300 | 72 | | | | RTOR Reduction (vph) | 0 | 377 | 0 | 0 | 0 | 43 | | | | Lane Group Flow (vph) | 400 | 167 | 94 | 294 | 300 | 29 | | | | Turn Type | | Perm | pm+pt | | | Perm | | | | Protected Phases | 2 | | 1 | 6 | 3 | | | | | Permitted Phases | | 2 | 6 | | | 3 | | | | Actuated Green, G (s) | 16.6 | 16.6 | 25.2 | 25.2 | 22.3 | 22.3 | | | | Effective Green, g (s) | 17.5 | 17.5 | 26.1 | 26.1 | 22.9 | 22.9 | | | | Actuated g/C Ratio | 0.31 | 0.31 | 0.46 | 0.46 | 0.40 | 0.40 | | | | Clearance Time (s) | 4.9 | 4.9 | 4.1 | 4.9 | 4.6 | 4.6 | | | | Vehicle Extension (s) | 5.2 | 5.2 | 2.5 | 5.2 | 5.2 | 5.2 | | | | Lane Grp Cap (vph) | 1087 | 486 | 417 | 1620 | 711 | 636 | | | | v/s Ratio Prot | c0.11 | | c0.02 | 0.08 | c0.17 | | | | | v/s Ratio
Perm | | 0.11 | 0.08 | | | 0.02 | | | | v/c Ratio | 0.37 | 0.34 | 0.23 | 0.18 | 0.42 | 0.05 | | | | Uniform Delay, d1 | 15.4 | 15.3 | 9.1 | 9.1 | 12.3 | 10.4 | | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Incremental Delay, d2 | 0.5 | 1.0 | 0.2 | 0.1 | 1.8 | 0.1 | | | | Delay (s) | 15.9 | 16.3 | 9.3 | 9.3 | 14.1 | 10.5 | | | | Level of Service | В | В | Α | Α | В | В | | | | Approach Delay (s) | 16.1 | | | 9.3 | 13.4 | | | | | Approach LOS | В | | | Α | В | | | | | Intersection Summary | | | | | | | | | | HCM Average Control D | elay | | 14.0 | Н | ICM Le | vel of Service | e B | | | HCM Volume to Capaci | ty ratio | | 0.38 | | | | | | | Actuated Cycle Length (| (s) | | 57.0 | 5 | Sum of le | ost time (s) | 12.0 | | | Intersection Capacity Ut | ilization | | 42.0% | % ICU Level of Service | | | . A | | | Analysis Period (min) | | | 15 | | | | | | | c Critical Lane Group | | | | | | | | | HCM Signalized Intersection Capacity Analysis Page 9 HCM Unsignalized Intersection Capacity Analysis 10: Main Street & Sierra Park Boulevard Saturday Peak - Alternative 3 10/12/2010 | | ۶ | → | • | • | ← | • | 1 | † | / | - | ţ | 4 | |--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|------|------|------|----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SE | | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 350 | 85 | 40 | 290 | 10 | 40 | 10 | 45 | 10 | 10 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0. | | Hourly flow rate (vph) | 11 | 389 | 94 | 44 | 322 | 11 | 44 | 11 | 50 | 11 | 11 | | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | 544 | | | | | | | | | | | | pX, platoon unblocked | | | | 0.95 | | | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | vC, conflicting volume | 333 | | | 483 | | | 731 | 881 | 242 | 689 | 922 | 1 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 333 | | | 411 | | | 670 | 827 | 157 | 626 | 871 | 10 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3 | | p0 queue free % | 99 | | | 96 | | | 85 | 96 | 94 | 96 | 96 | 9 | | cM capacity (veh/h) | 1223 | | | 1092 | | | 299 | 277 | 821 | 308 | 261 | 84 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 11 | 259 | 224 | 44 | 215 | 119 | 106 | 39 | | | | | | Volume Left | 11 | 0 | 0 | 44 | 0 | 0 | 44 | 11 | | | | | | Volume Right | 0 | 0 | 94 | 0 | 0 | 11 | 50 | 17 | | | | | | cSH | 1223 | 1700 | 1700 | 1092 | 1700 | 1700 | 422 | 396 | | | | | | Volume to Capacity | 0.01 | 0.15 | 0.13 | 0.04 | 0.13 | 0.07 | 0.25 | 0.10 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 3 | 0 | 0 | 24 | 8 | | | | | | Control Delay (s) | 8.0 | 0.0 | 0.0 | 8.4 | 0.0 | 0.0 | 16.3 | 15.1 | | | | | | Lane LOS | Α | | | Α | | | С | С | | | | | | Approach Delay (s) | 0.2 | | | 1.0 | | | 16.3 | 15.1 | | | | | | Approach LOS | | | | | | | С | С | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 2.7 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 34.4% | l l | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 10 Mammoth Lakes (LSC#084870) LSC, Inc. (BP) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 11: Tavern Road & Old Mammoth Road Saturday Peak - Alternative 3 10/12/2010 | Lane Configurations | | • | - | • | • | • | • | • | † | - | - | ţ | 4 | |--|------------------------|------------|------|-------|------|--------|-----------|------|----------|------|------|------|------| | Sign Control Stop | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Grade | Lane Configurations | | 4 | | | 4 | | ሻ | - 1→ | | ሻ | - 1> | | | Volume (veh/h) | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Peak Hour Factor | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Hourly flow rate (vph) 22 6 39 6 6 17 50 406 6 11 722 39 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) 760 pX, platoon unblocked vC, conflicting volume 1289 1275 742 1294 1292 408 761 411 VC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol 1289 1275 742 1294 1292 408 761 411 CC, 2 stage (s) If (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 pQ queue free % 82 96 91 95 96 97 94 99 CM capacity (veh/h) 126 156 416 117 152 643 851 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 67 28 50 411 11 761 Volume Left 22 6 50 0 11 0 Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Dolay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Volume (veh/h) | 20 | 5 | 35 | 5 | 5 | 15 | 45 | 365 | 5 | 10 | 650 | 35 | | Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Non | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage 1 conf vol vC5, stage 5 conf vol vC6, stage 6 conf vol vC7, stage 7 conf vol vC8, stage 8 conf vol vC9, stage 8 conf vol vC9, stage 9 conf vol vC9, stage 1 conf vol vC9, stage 2 conf vol vC9, stage 1 conf vol vC9, stage 2 vC1, stage 1 | Hourly flow rate (vph) | 22 | 6 | 39 | 6 | 6 | 17 | 50 | 406 | 6 | 11 | 722 | 39 | | Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) Dys. platoon unblocked VC, conflicting volume VC1, stage 1 conf vol VC2, stage 2 conf vol VC4, unblocked vol 1289 1275 742 1294 1292 408 761 411 VC1, stage 1 conf vol VC2, stage 2 conf vol VC4, unblocked vol 1289 1275 742 1294 1292 408 761 411 Understand the stage of | Pedestrians | | | | | | | | | | | | | | Percent Blockage Right turn flare (veh) None None Median type None None Median storage veh) Upstream signal (ft) 760 pX, platoon unblocked voc, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1289 1275 742 1294 1292 408 761 411 411 VC1, unblocked vol 1289 1275 742 1294 1292 408 761 411 4.1 4.1 VC2, stage 2 conf vol vC2, stage (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 4.1 VC3, stage (s) 8.2 96 91 95 96 97 94 99 99 col departed veh/h) 126 156 416 117 152 643 851 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Column Fotal 67 28 50 411 11 761 Volume Total 67 28 50 411 11 761 0 39 cSH Volume Right 39 17 0 6 0 39 cSH (tt) 31 9 5 0 11 0 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (tt) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A A Approach Delay (s) 28.6
21.0 1.0 0.1 Approach COS D C Hoter Country Utilization 49.9% ICU Level of Service A | Lane Width (ft) | | | | | | | | | | | | | | Right turn flare (veh) Median type None N | Walking Speed (ft/s) | | | | | | | | | | | | | | Median type None None Median storage veh) Upstream signal (ft) 760 pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCQ, unblocked vol 1289 1275 742 1294 1292 408 761 411 411 vC2, stage 2 conf vol vCQ, unblocked vol 1289 1275 742 1294 1292 408 761 411 41 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 4.1 tC, 2 stage (s) 156 91 95 96 97 94 99 90 tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 2.2 p0 queue free % 82 96 91 95 96 97 94 99 99 99 cM capacity (veh/h) 126 156 416 117 152 643 851 1148 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 67 28 50 411 11 761 Volume Right 39 17 0 6 0 39 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 1.0 0.0 0.1 Approach LOS D C D C A Approach LOS D C Intersection Summary A <td>Percent Blockage</td> <td></td> | Percent Blockage | | | | | | | | | | | | | | Median storage veh) Upstream signal (ft) Upstream signal (ft) VC, span signal (ft) VC, conflicting volume VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 8) T,1 6,5 6,2 7,1 6,5 6,2 4,1 4,1 T,1 T,1 6,5 6,2 4,1 4,1 T,1 6,5 6,2 4,1 T,1 1,1 7,1 1,1 7,1 T,1 1,1 1,1 7,1 T,1 1,1 1,1 1, | Right turn flare (veh) | | | | | | | | | | | | | | Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1289 1275 742 1294 1292 408 761 411 VC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, tstage 2 conf vol vC2, stage 8) 1289 1275 742 1294 1292 408 761 411 C5, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 C6, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 C7, stage (s) C8 | Median type | | None | | | None | | | | | | | | | pX, platoon unblocked vC, conflicting volume vC, conflicting volume vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, vC3, vC3, vC3, vC3, vC3, vC3, vC3, | Median storage veh) | | | | | | | | | | | | | | VC, conflicting volume 1289 1275 742 1294 1292 408 761 411 VC1, stage 1 conf vol vC2, stage 2 conf vol vCQ, unblocked vol 1289 1275 742 1294 1292 408 761 411 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) TEF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 pD queue free % 82 96 91 95 96 97 94 99 cM capacity (veh/h) 126 156 416 117 152 643 851 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 67 28 50 411 11 761 Volume Left 22 6 50 0 11 0 Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Upstream signal (ft) | | | | | | | | | | | 760 | | | vC1, stage 1 conf vol
vC2, stage 2 conf vol
vC2, unblocked vol 1289 1275 742 1294 1292 408 761 411
tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1
tC, 2 stage (s)
tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2
p0 queue free % 82 96 91 95 96 97 94 99
cM capacity (veh/h) 126 156 416 117 152 643 851 1148
Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2
Volume Total 67 28 50 411 11 761
Volume Left 22 6 50 0 11 0
Volume Right 39 17 0 6 0 39
cSH 218 252 851 1700 1148 1700
Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45
Queue Length 95th (ft) 31 9 5 0 1 0
Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0
Lane LOS D C A A
Approach Delay (s) 28.6 21.0 1.0 0.1
Approach LOS D C Intersection Summary Average Delay 2.3
Intersection Capacity Utilization 49.9% ICU Level of Service A | pX, platoon unblocked | | | | | | | | | | | | | | VCQ, stage 2 conf vol VCQ, unblocked vol 1289 1275 742 1294 1292 408 761 411 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 82 96 91 95 96 97 94 99 cM capacity (veh/h) 126 156 416 117 152 643 851 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 67 28 50 411 11 761 Volume Left 22 6 50 0 11 0 Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach Delay (s) 28.6 21.0 1.0 0.1 Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | vC, conflicting volume | 1289 | 1275 | 742 | 1294 | 1292 | 408 | 761 | | | 411 | | | | VCu, unblocked vol 1289 1275 742 1294 1292 408 761 411 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 IC, single (s) 1.1 IC, single (s) 7.1 6.5 6.2 4.1 1 6.2 4.1 1 IC, single (s) 7.1 6.5 6.2 6.2 4.1 1 IC, single (s) 7.1 6.5 6.2 4.1 1 IC, single (s) 7.1 6.5 6.2 6.2 4.1 1 IC, single (s) 7.1 6.5 6.2 4.1 1 IC, single (s) 7.1 1.1 1.1 IC, single (s) 7.1 1.1 IC, single (s) 7.1 1.1 IC, single (| vC1, stage 1 conf vol | | | | | | | | | | | | | | tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (C, 2 stage (s) tC, (s | vC2, stage 2 conf vol | | | | | | | | | | | | | | IC, 2 stage (s) IF (s) | vCu, unblocked vol | 1289 | 1275 | 742 | 1294 | 1292 | 408 | 761 | | | 411 | | | | tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 82 96 91 95 96 97 94 99 cM capacity (veh/h) 126 156 416 117 152 643 851 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 67 28 50 411 11 761 Volume Left 22 6 50 0 11 0 Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | p0 queue free % 82 96 91 95 96 97 94 99 cM capacity (veh/h) 126 156 416 117 152 643 851 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 | tC, 2 stage (s) | | | | | | | | | | | | | | CM capacity (veh/h) 126 156 416 117 152 643 851 1148 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 67 28 50 411 11 761 Volume Right 22 6 50 0 11 0 Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | Direction, Lane # | p0 queue free % | 82 | 96 | | | 96 | 97 | 94 | | | 99 | | | | Volume Total 67 28 50 411 11 761 Volume Left 22 6 50 0 11 0 Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | cM capacity (veh/h) | 126 | 156 | 416 | 117 | 152 | 643 | 851 | | | 1148 | | | | Volume Left 22 6 50 0 11 0 Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Right 39 17 0 6 0 39 cSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Volume Total | 67 | 28 | 50 | 411 | 11 | 761 | | | | | | | | CSH 218 252 851 1700 1148 1700 Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Volume Left | 22 | 6 | 50 | 0 | 11 | 0 | | | | | | | | Volume to Capacity 0.31 0.11 0.06 0.24 0.01 0.45 Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Volume Right | 39 | 17 | 0 | 6 | 0 | 39 | | | | | | | | Queue Length 95th (ft) 31 9 5 0 1 0 Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | cSH | 218 | 252 | 851 | 1700 | 1148 | 1700 | | | | | | | | Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU
Level of Service A | Volume to Capacity | 0.31 | 0.11 | 0.06 | 0.24 | 0.01 | 0.45 | | | | | | | | Control Delay (s) 28.6 21.0 9.5 0.0 8.2 0.0 Lane LOS D C A A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Queue Length 95th (ft) | 31 | 9 | 5 | 0 | 1 | 0 | | | | | | | | Lane LOS D C A A Approach Delay (s) 28.6 21.0 1.0 0.1 Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | | 28.6 | 21.0 | 9.5 | 0.0 | 8.2 | 0.0 | | | | | | | | Approach LOS D C Intersection Summary Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Lane LOS | D | С | Α | | Α | | | | | | | | | Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Approach Delay (s) | 28.6 | 21.0 | 1.0 | | 0.1 | | | | | | | | | Average Delay 2.3 Intersection Capacity Utilization 49.9% ICU Level of Service A | Approach LOS | D | С | | | | | | | | | | | | Intersection Capacity Utilization 49.9% ICU Level of Service A | Intersection Summary | | | | | | | | | | | | | | Intersection Capacity Utilization 49.9% ICU Level of Service A | Average Delay | | | 2.3 | | | | | | | | | | | Analysis Period (min) 15 | | tilization | 1 | 49.9% | 10 | CU Lev | el of Ser | vice | | Α | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 11 HCM Unsignalized Intersection Capacity Analysis 12: Sierra Nevada Road & Old Mammoth Road Saturday Peak - Alternative 3 10/12/2010 | | ၨ | → | • | • | ← | • | • | † | / | > | Ţ | 1 | |--------------------------|------------|----------|-------|------|----------|-----------|------|----------|----------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ቆ | | | 4 | | ሻ | ₽ | | ሻ | î, | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 15 | 80 | 20 | 20 | 30 | 70 | 385 | 5 | 45 | 595 | 45 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 17 | 89 | 22 | 22 | 33 | 78 | 428 | 6 | 50 | 661 | 50 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | 773 | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1414 | 1375 | 686 | 1444 | 1397 | 431 | 711 | | | 433 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1414 | 1375 | 686 | 1444 | 1397 | 431 | 711 | | | 433 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 74 | 87 | 80 | 69 | 82 | 95 | 91 | | | 96 | | | | cM capacity (veh/h) | 85 | 127 | 447 | 71 | 123 | 625 | 888 | | | 1126 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 128 | 78 | 78 | 433 | 50 | 711 | | | | | | | | Volume Left | 22 | 22 | 78 | 0 | 50 | 0 | | | | | | | | Volume Right | 89 | 33 | 0 | 6 | 0 | 50 | | | | | | | | cSH | 216 | 143 | 888 | 1700 | 1126 | 1700 | | | | | | | | Volume to Capacity | 0.59 | 0.55 | 0.09 | 0.25 | 0.04 | 0.42 | | | | | | | | Queue Length 95th (ft) | 83 | 67 | 7 | 0 | 3 | 0 | | | | | | | | Control Delay (s) | 43.3 | 57.0 | 9.4 | 0.0 | 8.3 | 0.0 | | | | | | | | Lane LOS | E | F | Α | | Α | | | | | | | | | Approach Delay (s) | 43.3 | 57.0 | 1.4 | | 0.5 | | | | | | | | | Approach LOS | Е | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 7.5 | | | | | | | | | | | Intersection Capacity Ut | tilization | 1 | 55.9% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 13: Meridian Boulevard & Majestic Pines Drive Saturday Peak - Alternative 3 10/12/2010 | | • | - | • | • | - | 4 | | | |--------------------------|-----------|------|------------|------|---------|---------------|---|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | | 41₽ | † } | | Y | | | | | Sign Control | | Free | Free | | Stop | | | | | Grade | | 0% | 0% | | 0% | | | | | Volume (veh/h) | 60 | 435 | 220 | 70 | 50 | 40 | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Hourly flow rate (vph) | 67 | 483 | 244 | 78 | 56 | 44 | | | | Pedestrians | | | | | | | | | | Lane Width (ft) | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | Percent Blockage | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | Median type | | | | | None | | | | | Median storage veh) | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | vC, conflicting volume | 322 | | | | 658 | 161 | | | | vC1, stage 1 conf vol | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | vCu, unblocked vol | 322 | | | | 658 | 161 | | | | tC, single (s) | 4.1 | | | | 6.8 | 6.9 | | | | tC, 2 stage (s) | | | | | | | | | | tF (s) | 2.2 | | | | 3.5 | 3.3 | | | | p0 queue free % | 95 | | | | 85 | 95 | | | | cM capacity (veh/h) | 1234 | | | | 376 | 855 | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | SB 1 | | | | | Volume Total | 228 | 322 | 163 | 159 | 100 | | | | | Volume Left | 67 | 0 | 0 | 0 | 56 | | | | | Volume Right | 0 | 0 | 0 | 78 | 44 | | | | | cSH | 1234 | 1700 | 1700 | 1700 | 500 | | | | | Volume to Capacity | 0.05 | 0.19 | 0.10 | 0.09 | 0.20 | | | | | Queue Length 95th (ft) | 4 | 0 | 0 | 0 | 18 | | | | | Control Delay (s) | 2.7 | 0.0 | 0.0 | 0.0 | 14.0 | | | | | Lane LOS | Α | | | | В | | | | | Approach Delay (s) | 1.1 | | 0.0 | | 14.0 | | | | | Approach LOS | | | | | В | | | | | Intersection Summary | | | | | | | | | | Average Delay | | | 2.1 | | | | | | | Intersection Capacity Ut | ilization | | 37.3% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 13 HCM Signalized Intersection Capacity Analysis 14: Meridian Boulevard & Minaret Road Saturday Peak - Alternative 3 10/12/2010 | | ۶ | - | • | • | — | • | 1 | † | ~ | / | ţ | 1 | |-------------------------|------------|------------|-------|-------|------------|-----------|--------|------|------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † } | | ሻ | ↑ ↑ | | ሻ | ₽ | | 7 | 4î | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.96 | | 1.00 | 0.93 | | 1.00 | 0.98 | | 1.00 | 0.98 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3411 | | 1770 | 3305 | | 1770 | 1830 | | 1770 | 1816 | | | Flt Permitted | 0.36 | 1.00 | | 0.43 | 1.00 | | 0.33 | 1.00 | | 0.43 | 1.00 | | | Satd. Flow (perm) | 668 | 3411 | | 796 | 3305 | | 620 | 1830 | | 799 | 1816 | | | Volume (vph) | 140 | 315 | 100 | 35 | 190 | 150 | 55 | 190 | 25 | 320 | 450 | 90 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 156 | 350 | 111 | 39 | 211 | 167 | 61 | 211 | 28 | 356 | 500 | 100 | | RTOR Reduction (vph) | 0 | 33 | 0 | 0 | 131 | 0 | 0 | 5 | 0 | 0 | 8 | 0 | | Lane Group Flow (vph) | 156 | 428 | 0 | 39 | 247 | 0 | 61 | 234 | 0 | 356 | 592 | 0 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | | pm+pt | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 24.2 | 18.4 | | 18.6 | 15.6 | | 25.3 | 22.3 | | 40.6 | 33.5 | | | Effective Green, g (s) | 25.2 | 19.3 | | 19.6 | 16.5 | | 26.3 | 23.2 | | 41.5 | 34.4 | | | Actuated g/C Ratio | 0.33 | 0.25 | | 0.26 | 0.22 | | 0.35 | 0.31 | | 0.55 | 0.45 | | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | | Vehicle Extension (s) | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | | Lane Grp Cap (vph) | 307 | 867 | | 245 | 718 | | 262 | 559 | | 620 | 823 | | | v/s Ratio Prot | c0.04 | 0.13 | | 0.01 | 0.07 | | 0.01 | 0.13 | | c0.11 | c0.33 | | | v/s Ratio Perm | c0.13 | | | 0.03 | | | 0.07 | | | 0.21 | | | | v/c Ratio | 0.51 | 0.49 | | 0.16 | 0.34 | | 0.23 | 0.42 | | 0.57 | 0.72 | | | Uniform Delay, d1 | 18.9 | 24.1 | | 21.4 | 25.1 | | 17.0 | 21.0 | | 10.4 | 16.8 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.0 | 0.9 | | 0.2 | 0.6 | | 0.3 | 1.1 | | 1.1 | 3.8 | | | Delay (s) | 19.8 | 25.1 | | 21.6 | 25.7 | | 17.3 | 22.0 | | 11.4 | 20.6 | | | Level of Service | В | С | | С | С | | В | С | | В | С | | | Approach Delay (s) | | 23.7 | | | 25.3 | | | 21.1 | | | 17.2 | | | Approach LOS | | С | | | С | | | С | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 20.9 | H | ICM Le | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | ity ratio | | 0.67 | | | | | | | | | | |
Actuated Cycle Length | (s) | | 75.9 | S | Sum of le | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | | 65.3% | 10 | CU Leve | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 15: Meridian Boulevard & Old Mammoth Road Saturday Peak - Alternative 3 10/12/2010 | | • | - | • | • | • | • | 1 | Ť | _ | - | ¥ | 4 | |---|------------|-------------|-------|-------|------------|-----------|--------|----------|------|-------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † î> | | ۲ | ↑ ↑ | | ሻ | † | 7 | ሻ | † | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 0.98 | | 1.00 | 0.97 | | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1770 | 3461 | | 1770 | 3448 | | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | | Flt Permitted | 0.35 | 1.00 | | 0.18 | 1.00 | | 0.32 | 1.00 | 1.00 | 0.49 | 1.00 | 1.00 | | Satd. Flow (perm) | 660 | 3461 | | 337 | 3448 | | 597 | 1863 | 1583 | 920 | 1863 | 1583 | | Volume (vph) | 175 | 670 | 115 | 105 | 360 | 75 | 130 | 230 | 50 | 120 | 310 | 55 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 194 | 744 | 128 | 117 | 400 | 83 | 144 | 256 | 56 | 133 | 344 | 61 | | RTOR Reduction (vph) | 0 | 16 | 0 | 0 | 19 | 0 | 0 | 0 | 39 | 0 | 0 | 44 | | Lane Group Flow (vph) | 194 | 856 | 0 | 117 | 464 | 0 | 144 | 256 | 17 | 133 | 344 | 17 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | Perm | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | 8 | 4 | | 4 | | Actuated Green, G (s) | 31.7 | 24.2 | | 27.3 | 22.0 | | 26.2 | 20.7 | 20.7 | 24.6 | 19.9 | 19.9 | | Effective Green, g (s) | 32.7 | 25.1 | | 28.3 | 22.9 | | 27.2 | 21.6 | 21.6 | 25.6 | 20.8 | 20.8 | | Actuated g/C Ratio | 0.45 | 0.34 | | 0.39 | 0.31 | | 0.37 | 0.30 | 0.30 | 0.35 | 0.29 | 0.29 | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | | Vehicle Extension (s) | 2.5 | 3.7 | | 2.5 | 3.8 | | 2.5 | 3.8 | 3.8 | 2.5 | 3.8 | 3.8 | | Lane Grp Cap (vph) | 412 | 1192 | | 237 | 1083 | | 313 | 552 | 469 | 379 | 532 | 452 | | v/s Ratio Prot | c0.05 | c0.25 | | 0.04 | 0.13 | | c0.04 | 0.14 | | 0.02 | c0.18 | | | v/s Ratio Perm | 0.16 | | | 0.15 | | | 0.14 | | 0.01 | 0.10 | | 0.01 | | v/c Ratio | 0.47 | 0.72 | | 0.49 | 0.43 | | 0.46 | 0.46 | 0.04 | 0.35 | 0.65 | 0.04 | | Uniform Delay, d1 | 12.8 | 20.8 | | 15.5 | 19.8 | | 16.3 | 20.9 | 18.2 | 16.7 | 22.8 | 18.8 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 0.6 | 2.2 | | 1.2 | 0.4 | | 0.8 | 0.8 | 0.0 | 0.4 | 2.9 | 0.0 | | Delay (s) | 13.4 | 23.0 | | 16.7 | 20.2 | | 17.0 | 21.7 | 18.3 | 17.1 | 25.8 | 18.9 | | Level of Service | В | С | | В | С | | В | С | В | В | С | В | | Approach Delay (s) | | 21.3 | | | 19.5 | | | 19.8 | | | 22.8 | | | Approach LOS | | С | | | В | | | В | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| | | 20.9 | H | ICM Le | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | | | 0.66 | | | | | | | | | | | Actuated Cycle Length | | | 72.9 | S | Sum of l | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | | 64.9% | 10 | CU Leve | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Critical Lane Group | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 15 HCM Unsignalized Intersection Capacity Analysis 16: Meridian Boulevard & Sierra Park Road Saturday Peak - Alternative 3 10/12/2010 | | ۶ | → | • | • | + | 4 | • | † | / | / | ↓ | 4 | |--------------------------|-----------|----------|-------|-------|---------|-----------|------|------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Stop | | | Stop | | | Volume (vph) | 45 | 145 | 5 | 5 | 140 | 15 | 25 | 5 | 5 | 15 | 5 | 75 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 50 | 161 | 6 | 6 | 156 | 17 | 28 | 6 | 6 | 17 | 6 | 83 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total (vph) | 131 | 86 | 83 | 94 | 39 | 106 | | | | | | | | Volume Left (vph) | 50 | 0 | 6 | 0 | 28 | 17 | | | | | | | | Volume Right (vph) | 0 | 6 | 0 | 17 | 6 | 83 | | | | | | | | Hadj (s) | 0.23 | -0.01 | 0.07 | -0.09 | 0.09 | -0.41 | | | | | | | | Departure Headway (s) | 5.2 | 5.0 | 5.1 | 5.0 | 5.0 | 4.5 | | | | | | | | Degree Utilization, x | 0.19 | 0.12 | 0.12 | 0.13 | 0.05 | 0.13 | | | | | | | | Capacity (veh/h) | 666 | 692 | 671 | 695 | 659 | 744 | | | | | | | | Control Delay (s) | 8.3 | 7.5 | 7.6 | 7.5 | 8.3 | 8.1 | | | | | | | | Approach Delay (s) | 8.0 | | 7.6 | | 8.3 | 8.1 | | | | | | | | Approach LOS | Α | | Α | | Α | Α | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Delay | | | 7.9 | | | | | | | | | | | HCM Level of Service | | | Α | | | | | | | | | | | Intersection Capacity Ut | ilization | | 26.5% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 17: Chateau Road & Old Mammoth Road Saturday Peak - Alternative 3 10/12/2010 | | ۶ | - | • | • | • | • | • | † | - | / | ţ | 4 | |------------------------|------|------|------|------|------|------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | J. | f) | | J. | î | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 30 | 30 | 10 | 10 | 20 | 55 | 10 | 275 | 10 | 95 | 335 | 70 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 33 | 33 | 11 | 11 | 22 | 61 | 11 | 306 | 11 | 106 | 372 | 78 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 1037 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1022 | 961 | 411 | 944 | 994 | 311 | 450 | | | 317 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1022 | 961 | 411 | 944 | 994 | 311 | 450 | | | 317 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 80 | 86 | 98 | 94 | 90 | 92 | 99 | | | 92 | | | | cM capacity (veh/h) | 168 | 232 | 641 | 197 | 222 | 729 | 1110 | | | 1243 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 78 | 94 | 11 | 317 | 106 | 450 | | | | | | | | Volume Left | 33 | 11 | 11 | 0 | 106 | 0 | | | | | | | | Volume Right | 11 | 61 | 0 | 11 | 0 | 78 | | | | | | | | cSH | 217 | 393 | 1110 | 1700 | 1243 | 1700 | | | | | | | | Volume to Capacity | 0.36 | 0.24 | 0.01 | 0.19 | 0.08 | 0.26 | | | | | | | | Queue Length 95th (ft) | 39 | 23 | 1 | 0 | 7 | 0 | | | | | | | | Control Delay (s) | 30.6 | 17.0 | 8.3 | 0.0 | 8.2 | 0.0 | | | | | | | | Lane LOS | D | С | Α | | Α | | | | | | | | | Approach Delay (s) | 30.6 | 17.0 | 0.3 | | 1.6 | | | | | | | | | Approach LOS | D | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 47 | | | | | | | | | | Intersection Summary Average Delay 4.7 Intersection Capacity Utilization 45.3% ICU Level of Service A Analysis Period (min) 15 LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 17 HCM Unsignalized Intersection Capacity Analysis 18: Old Mammoth Road & Minaret Road Saturday Peak - Alternative 3 10/12/2010 | | • | - | • | • | • | • | 4 | † | - | - | ļ | 1 | |------------------------------------|-----------|------|-------|------|-----------|------------|-------|----------|------|------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | J. | f) | | ሻ | î, | | | ની | 7 | J. | f. | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 105 | 160 | 45 | 135 | 185 | 90 | 20 | 65 | 90 | 100 | 155 | 20 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 117 | 178 | 50 | 150 | 206 | 100 | 22 | 72 | 100 | 111 | 172 | 22 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | |
 | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 306 | | | 228 | | | 1250 | 1042 | 203 | 1053 | 1017 | 25 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 306 | | | 228 | | | 1250 | 1042 | 203 | 1053 | 1017 | 25 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6. | | tC, 2 stage (s) | | | | | | | | 0.0 | 0.2 | | 0.0 | 0. | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | p0 queue free % | 91 | | | 89 | | | 0.0 | 61 | 88 | 0.0 | 10 | 7 | | cM capacity (veh/h) | 1255 | | | 1340 | | | 21 | 185 | 838 | 108 | 191 | 78 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | SB 2 | | | | | | | Volume Total | 117 | 228 | 150 | 306 | 194 | 111 | 394 | | | | | | | | 117 | 228 | | 306 | 194 | | 394 | | | | | | | Volume Left | 117 | 50 | 150 | - | 100 | 111 | 222 | | | | | | | Volume Right
cSH | - | | | 100 | | 0 | | | | | | | | | 1255 | 1700 | 1340 | 1700 | 243 | 108 | 333 | | | | | | | Volume to Capacity | 0.09 | 0.13 | 0.11 | 0.18 | 0.80 | 1.03 | 1.18 | | | | | | | Queue Length 95th (ft) | 8 | 0 | 9 | 0 | 151 | 167 | 414 | | | | | | | Control Delay (s) | 8.2 | 0.0 | 8.0 | 0.0 | 60.9 | 170.1 | 143.4 | | | | | | | Lane LOS | A | | A | | F | F | F | | | | | | | Approach Delay (s)
Approach LOS | 2.8 | | 2.6 | | 60.9
F | 149.3
F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 59.6 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 51.9% | 10 | CU Leve | el of Se | rvice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. # Future - Alternative 4 LOS Reports HCM Unsignalized Intersection Capacity Analysis 1: Forest Trail & Minaret Road Saturday Peak - Alternative 4 10/12/2010 | → → → ← ← ← ↑ ↑ / / / / / / / / / / / / / / / | , - | |--|----------| | Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL S | BT SBR | | Lane Configurations 🗘 🗘 | ₩ | | | ree | | Grade 0% 0% 0% | 0% | | Volume (veh/h) 20 30 95 20 20 15 75 185 35 85 7 | 720 105 | | Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9 | .90 0.90 | | Hourly flow rate (vph) 22 33 106 22 22 17 83 206 39 94 8 | 300 117 | | Pedestrians | | | Lane Width (ft) | | | Walking Speed (ft/s) | | | Percent Blockage | | | Right turn flare (veh) | | | Median type None None | | | Median storage veh) | | | Upstream signal (ft) | | | pX, platoon unblocked | | | vC, conflicting volume 1467 1458 858 1561 1497 225 917 244 | | | vC1, stage 1 conf vol | | | vC2, stage 2 conf vol | | | vCu, unblocked vol 1467 1458 858 1561 1497 225 917 244 | | | tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 | | | tC, 2 stage (s) | | | tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 | | | p0 queue free % 70 69 70 48 78 98 89 93 | | | cM capacity (veh/h) 75 107 356 42 101 814 744 1322 | | | Direction, Lane # EB 1 WB 1 NB 1 SB 1 | | | Volume Total 161 61 328 1011 | | | Volume Left 22 22 83 94 | | | Volume Right 106 17 39 117 | | | cSH 178 80 744 1322 | | | Volume to Capacity 0.91 0.77 0.11 0.07 | | | Queue Length 95th (ft) 170 94 9 6 | | | Control Delay (s) 97.1 132.6 3.7 1.9 | | | Lane LOS F F A A | | | Approach Delay (s) 97.1 132.6 3.7 1.9 | | | Approach LOS F F | | | Intersection Summary | | | Average Delay 17.2 | | | Intersection Capacity Utilization 69.2% ICU Level of Service C | | | Analysis Period (min) 15 | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 1 HCM Unsignalized Intersection Capacity Analysis 2: Lake Mary Road & Davidson Saturday Peak - Alternative 4 10/12/2010 | | ۶ | - | • | • | • | • | 4 | † | ~ | - | ļ | 4 | |--------------------------|-----------|------|-------|------|---------|-----------|------|----------|------|------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBI | | Lane Configurations | | 4 | | | 4 | | | ર્ન | 7 | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 0 | 100 | 15 | 85 | 100 | 45 | 10 | 0 | 70 | 70 | 0 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 0 | 111 | 17 | 94 | 111 | 50 | 11 | 0 | 78 | 78 | 0 | | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 161 | | | 128 | | | 450 | 469 | 119 | 483 | 453 | 13 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 161 | | | 128 | | | 450 | 469 | 119 | 483 | 453 | 13 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3 | | p0 queue free % | 100 | | | 94 | | | 98 | 100 | 92 | 82 | 100 | (| | cM capacity (veh/h) | 1418 | | | 1458 | | | 491 | 460 | 932 | 430 | 470 | 9 | | Direction, Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 128 | 256 | 89 | 83 | | | | | | | | | | Volume Left | 0 | 94 | 11 | 78 | | | | | | | | | | Volume Right | 17 | 50 | 78 | 6 | | | | | | | | | | cSH | 1418 | 1458 | 1065 | 446 | | | | | | | | | | Volume to Capacity | 0.00 | 0.06 | 0.08 | 0.19 | | | | | | | | | | Queue Length 95th (ft) | 0 | 5 | 7 | 17 | | | | | | | | | | Control Delay (s) | 0.0 | 3.2 | 9.6 | 14.9 | | | | | | | | | | Lane LOS | | Α | Α | В | | | | | | | | | | Approach Delay (s) | 0.0 | 3.2 | 9.6 | 14.9 | | | | | | | | | | Approach LOS | | | Α | В | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 5.2 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 36.9% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 3: Lake Mary Road & Canyon Boulevard Saturday Peak - Alternative 4 10/12/2010 | o. Lake Mary Road | | , | | | | | | | | |--------------------------|-----------|----------|----------|------|-----------|---------------|----|---|--| | | ۶ | → | • | 4 | - | 4 | | | | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | | Lane Configurations | ሻ | ^ | ^ | 7 | ሻሻ | | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 3432 | | | | | | Flt Permitted | 0.59 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | | Satd. Flow (perm) | 1092 | 1863 | 1863 | 1583 | 3432 | | | | | | Volume (vph) | 25 | 220 | 255 | 255 | 535 | 15 | | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Adj. Flow (vph) | 28 | 244 | 283 | 283 | 594 | 17 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 124 | 6 | 0 | | | | | Lane Group Flow (vph) | 28 | 244 | 283 | 159 | 605 | 0 | | | | | Turn Type | Perm | | | Perm | | | | | | | Protected Phases | | 2 | 6 | | 4 | | | | | | Permitted Phases | 2 | | | 6 | | | | | | | Actuated Green, G (s) | 24.7 | 24.7 | 24.7 | 24.7 | 11.6 | | | | | | Effective Green, q (s) | 25.3 | 25.3 | 25.3 | 25.3 | 11.7 | | | | | | Actuated q/C Ratio | 0.56 | 0.56 | 0.56 | 0.56 | 0.26 | | | | | | Clearance Time (s) | 4.6 | 4.6 | 4.6 | 4.6 | 4.1 | | | | | | Vehicle Extension (s) | 6.1 | 6.1 | 6.1 | 6.1 | 2.0 | | | | | | Lane Grp Cap (vph) | 614 | 1047 | 1047 | 890 | 892 | | | | | | v/s Ratio Prot | | 0.13 | c0.15 | | c0.18 | | | | | | v/s Ratio Perm | 0.03 | | | 0.10 | | | | | | | v/c Ratio | 0.05 | 0.23 | 0.27 | 0.18 | 0.68 | | | | | | Uniform Delay, d1 | 4.4 | 5.0 | 5.1 | 4.8 | 15.0 | | | | | | Progression Factor | 1.00 | 1.00 | 0.45 | 0.85 | 1.00 | | | | | | Incremental Delay, d2 | 0.1 | 0.5 | 0.5 | 0.3 | 1.6 | | | | | | Delay (s) | 4.6 | 5.5 | 2.8 | 4.4 | 16.6 | | | | | | Level of Service | Α | Α | Α | Α | В | | | | | | Approach Delay (s) | | 5.4 | 3.6 | | 16.6 | | | | | | Approach LOS | | Α | Α | | В | | | | | | Intersection Summary | | | | | | | | | | | HCM Average Control D | elay | | 9.4 | H | HCM Lev | el of Service | | A | | | HCM Volume to Capaci | ty ratio | | 0.40 | | | | | | | | Actuated Cycle Length (| (s) | | 45.0 | 5 | Sum of Id | ost time (s) | 8. | 0 | | | Intersection Capacity Ut | ilization | | 43.2% | 10 | CU Leve | el of Service | | A | | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 3 HCM Signalized Intersection Capacity Analysis 4: Lake Mary Road & Minaret Road Saturday Peak - Alternative 4 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | ~ | / | ļ | 4 | |-------------------------|------------|----------|-------|-------|-----------|----------|--------|----------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane
Configurations | ٦ | ^ | 7 | J. | ^ | 7 | Ţ | † | 7 | ሻሻ | î» | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | | | Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3539 | 1583 | 1770 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1675 | | | Flt Permitted | 0.36 | 1.00 | 1.00 | 0.29 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 665 | 3539 | 1583 | 539 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1675 | | | Volume (vph) | 120 | 465 | 175 | 85 | 355 | 145 | 430 | 315 | 100 | 545 | 70 | 145 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 133 | 517 | 194 | 94 | 394 | 161 | 478 | 350 | 111 | 606 | 78 | 161 | | RTOR Reduction (vph) | 0 | 0 | 84 | 0 | 0 | 126 | 0 | 0 | 76 | 0 | 83 | 0 | | Lane Group Flow (vph) | 133 | 517 | 110 | 94 | 394 | 35 | 478 | 350 | 35 | 606 | 156 | 0 | | Turn Type | pm+pt | | Perm | pm+pt | | Perm | Split | | Perm | Split | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 8 | 8 | | 7 | 7 | | | Permitted Phases | 2 | | 2 | 6 | | 6 | | | 8 | | | | | Actuated Green, G (s) | 25.6 | 19.6 | 19.6 | 23.2 | 18.4 | 18.4 | 27.1 | 27.1 | 27.1 | 20.0 | 20.0 | | | Effective Green, q (s) | 26.6 | 20.5 | 20.5 | 24.2 | 19.3 | 19.3 | 28.0 | 28.0 | 28.0 | 20.6 | 20.6 | | | Actuated g/C Ratio | 0.30 | 0.23 | 0.23 | 0.27 | 0.21 | 0.21 | 0.31 | 0.31 | 0.31 | 0.23 | 0.23 | | | Clearance Time (s) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 2.5 | 4.7 | 4.7 | 2.5 | 4.6 | 4.6 | 5.2 | 5.2 | 5.2 | 6.2 | 6.2 | | | Lane Grp Cap (vph) | 271 | 806 | 361 | 212 | 759 | 339 | 551 | 580 | 492 | 786 | 383 | | | v/s Ratio Prot | c0.03 | c0.15 | | 0.02 | 0.11 | | c0.27 | 0.19 | | c0.18 | 0.09 | | | v/s Ratio Perm | 0.11 | | 0.07 | 0.10 | | 0.02 | | | 0.02 | | | | | v/c Ratio | 0.49 | 0.64 | 0.30 | 0.44 | 0.52 | 0.10 | 0.87 | 0.60 | 0.07 | 0.77 | 0.41 | | | Uniform Delay, d1 | 24.4 | 31.4 | 28.8 | 25.7 | 31.2 | 28.4 | 29.2 | 26.3 | 21.8 | 32.5 | 29.5 | | | Progression Factor | 0.82 | 0.84 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.9 | 3.3 | 1.8 | 1.1 | 2.5 | 0.6 | 16.7 | 4.6 | 0.3 | 7.2 | 3.2 | | | Delay (s) | 21.0 | 29.6 | 26.5 | 26.8 | 33.8 | 29.0 | 46.0 | 30.9 | 22.1 | 39.7 | 32.7 | | | Level of Service | С | С | С | С | С | С | D | С | С | D | С | | | Approach Delay (s) | | 27.5 | | | 31.6 | | | 37.5 | | | 37.7 | | | Approach LOS | | С | | | С | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control I | Delay | | 33.8 | H | ICM Le | vel of S | ervice | | С | | | | | HCM Volume to Capac | ity ratio | | 0.72 | | | | | | | | | | | Actuated Cycle Length | (s) | | 90.0 | S | Sum of le | ost time | (s) | | 12.0 | | | | | Intersection Capacity U | tilization | 1 | 67.6% | 10 | CU Leve | el of Se | rvice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 5: Main Street & Mountain Boulevard Saturday Peak - Alternative 4 10/12/2010 | Movement | | • | - | • | • | — | • | 1 | † | - | / | ţ | 4 | |--|--------------------------|-----------|------|-------|------|----------|-----------|-------|----------|------|----------|------|------| | Sign Control Free | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Volume (veh/h) | Sign Control | | | | | | | | Stop | | | Stop | | | Peak Hour Factor | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Hourly flow rate (vph) 33 1478 78 33 689 106 11 28 22 72 22 72 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) PX, platoon unblocked vC, conflicting volume 794 1556 2078 2444 778 1650 2431 397 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vol 794 1556 2078 2444 778 1650 2431 397 tC5, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC7, 2 stage (s) tf (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 96 92 0 0 0 93 0 20 88 cM capacity (veh/h) 823 422 8 27 339 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume Left 33 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Approach Delay (s) 0.5 1.2 962.2 Err Approach Delay (s) 0.5 1.2 962.2 Err Approach Delay (s) 0.5 1.2 962.2 Err Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | Volume (veh/h) | 30 | 1330 | 70 | 30 | 620 | 95 | 10 | 25 | 20 | 65 | 20 | 65 | | Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 794 | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC4, stage 2 conf vol vC5, stage 2 conf vol vC6, stage 1 conf vol vC7, stage 1 conf vol vC8, stage 2 conf vol vC9, stage 2 conf vol vC9, stage 2 conf vol vC9, stage 2 conf vol vC1, stage 1 conf vol vC9, stage 2 vC1, stage 1 vC2, stage 2 conf vol vC1, stage 1 | Hourly flow rate (vph) | 33 | 1478 | 78 | 33 | 689 | 106 | 11 | 28 | 22 | 72 | 22 | 72 | | Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) Dyx, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1, single (s) | Pedestrians | | | | | | | | | | | | | | Reject turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) VC, conflicting volume 794 1556 2078 2444 778 1650 2431 397 VC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 VC 2 stage (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 D0 queue free % 96 92 0 0 93 0 20 8 27 339 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 10 22 72 cSH 823 1700 422 170 25 0 Volume Left< | | | | | | | | | | | | | | | Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol tC, 2 stage (s) tF (s) | | | | | | | | | | | | | | | Median type Median storage veh) None None None Median storage veh) Median storage veh) Upstream signal (ft) None None None None Median storage veh) None | Percent Blockage | | | | | | | | | | | | | | Median storage veh) Upstream signal (ft) DX, platoon unblocked vC1, stage 1 conf vol vC1, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 794 1556 2078 2444 778 1650 2431 397 tC, stage (s) tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 96 92 0 0 93 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 16 22 72 25 CSH 823 1700 422 1700 25 0 Volume Right 0 | Right turn flare (veh) | | | | | | | |
 | | | | | Upstream signal (ft) pX, platoon unblocked | Median type | | | | | | | | None | | | None | | | pX, platoon unblocked vC, conflicting volume vC, conflicting volume vC, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vCu, vCu, vCu, vCu, vCu, vCu, vCu, | Median storage veh) | | | | | | | | | | | | | | VC, conflicting volume 794 1556 2078 2444 778 1650 2431 397 VC1, stage 1 conf vol VC2, stage 2 conf vol VCU, unblocked vol 794 1556 2078 2444 778 1650 2431 397 tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC, 2 stage (s) tF (s) 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 96 92 0 0 93 0 20 88 cM capacity (veh/h) 823 422 8 27 339 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A A F F Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | Upstream signal (ft) | | | | | | | | | | | | | | vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 794 1556 2078 2444 778 1650 2431 397 tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC, 2 stage (s) tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 96 92 0 0 93 0 20 88 cM capacity (veh/h) 823 422 8 27 339 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A A F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F Intersection Summary Average Delay Intersection Capacity Utilization 82.5% ICU Level of Service E | pX, platoon unblocked | | | | | | | | | | | | | | VCQ, stage 2 conf vol VCU, unblocked vol 794 1556 2078 2444 778 1650 2431 397 (C, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC, 2 stage (s) tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 96 92 0 0 0 93 0 20 88 cM capacity (veh/h) 823 422 8 27 339 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A A F F Approach LOS F Intersection Summary Average Delay Intersection Capacity Utilization 82.5% ICU Level of Service E | vC, conflicting volume | 794 | | | 1556 | | | 2078 | 2444 | 778 | 1650 | 2431 | 397 | | vCu, unblocked vol
tC, single (s) 794
4.1 1556
4.1 2078
4.1 2444
77.5 77.5
6.5 6.9
6.9 7.5
6.5 6.9
6.9 2431
7.5 397
6.5 397
6.9 397
7.5 6.5
6.9 6.9
7.5 6.9
7.0 8.0 8.2 8.27
7.2 8.2 <td>vC1, stage 1 conf vol</td> <td></td> | vC1, stage 1 conf vol | | | | | | | | | | | | | | tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC, 2 stage (s) | vC2, stage 2 conf vol | | | | | | | | | | | | | | IC, 2 stage (s) IF (s) | vCu, unblocked vol | 794 | | | 1556 | | | 2078 | 2444 | 778 | 1650 | 2431 | 397 | | tF (s) | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | p0 queue free % 96 92 0 0 0 93 0 20 88 cM capacity (veh/h) 823 422 8 27 339 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F F Approach LOS F F F Intersection Summary Average Delay Intersection Capacity Utilization 82.5% ICU Level of Service E | tC, 2 stage (s) | | | | | | | | | | | | | | CM capacity (veh/h) 823 422 8 27 339 0 28 602 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 | p0 queue free % | 96 | | | 92 | | | 0 | 0 | 93 | 0 | 20 | 88 | | Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 CSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | cM capacity (veh/h) | 823 | | | 422 | | | 8 | 27 | 339 | 0 | 28 | 602 | | Volume Total 772 817 378 450 61 167 Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 CSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Left 33 0 33 0 11 72 Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | | | | | | | | | | | Volume Right 0 78 0 106 22 72 cSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F F Approach LOS 1.2 962.2 Err Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | | | | | | | | | | | CSH 823 1700 422 1700 25 0 Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | - | | - | | | | | | | | | | Volume to Capacity 0.04 0.48 0.08 0.26 2.40 Err Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | | | | | | | | | | | Queue Length 95th (ft) 3 0 6 0 188 Err Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | | | | | | | | | | | Control Delay (s) 1.1 0.0 2.5 0.0 962.2 Err Lane LOS A A F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | | | | | | | | | | | Lane LOS A A F F Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | 0.0 | 962.2 | Err | | | | | | | | Approach Delay (s) 0.5 1.2 962.2 Err Approach LOS F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | 0.0 | | 0.0 | | | | | | | | | | Approach LOS F F Intersection Summary Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | | 962.2 | Err | | | | | | | | Average Delay Err Intersection Capacity Utilization 82.5% ICU Level of Service E | | | | | | | | | | | | | | | Intersection Capacity Utilization 82.5% ICU Level of Service E | Intersection Summary | | | | | | | | | | | | | | | Average Delay | | | | | | | | | | | | | | Analysis Period (min) 15 | Intersection Capacity Ut | ilization | | 82.5% | I | CU Lev | el of Sei | rvice | | Е | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 5 HCM Unsignalized Intersection Capacity Analysis 6: Main Street & Center Street Saturday Peak - Alternative 4 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | <i>></i> | - | ļ | 1 | |--------------------------|-----------|-------------|-------|------|------------|----------|-------|----------|-------------|------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | ሻ | † î> | | ሻ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 75 | 1055 | 0 | 95 | 45 | 715 | 45 | 10 | 95 | 45 | 0 | 3 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 83 | 1172 | 0 | 106 | 50 | 794 | 50 | 11 | 106 | 50 | 0 | 3 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 1207 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 844 | | | 1172 | | | 1614 | 2394 | 586 | 1522 | 1997 | 42 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2
conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 844 | | | 1172 | | | 1614 | 2394 | 586 | 1522 | 1997 | 42 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6. | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | p0 queue free % | 89 | | | 82 | | | 3 | 54 | 77 | 0 | 100 | 9 | | cM capacity (veh/h) | 788 | | | 592 | | | 51 | 24 | 453 | 32 | 44 | 58 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 83 | 781 | 391 | 106 | 33 | 811 | 167 | 89 | | | | | | Volume Left | 83 | 0 | 0 | 106 | 0 | 0 | 50 | 50 | | | | | | Volume Right | 0 | 0 | 0 | 0 | 0 | 794 | 106 | 39 | | | | | | cSH | 788 | 1700 | 1700 | 592 | 1700 | 1700 | 100 | 55 | | | | | | Volume to Capacity | 0.11 | 0.46 | 0.23 | 0.18 | 0.02 | 0.48 | 1.66 | 1.61 | | | | | | Queue Length 95th (ft) | 9 | 0 | 0 | 16 | 0 | 0 | 327 | 206 | | | | | | Control Delay (s) | 10.1 | 0.0 | 0.0 | 12.4 | 0.0 | 0.0 | 411.3 | 463.1 | | | | | | Lane LOS | В | | | В | | | F | F | | | | | | Approach Delay (s) | 0.7 | | | 1.4 | | | 411.3 | 463.1 | | | | | | Approach LOS | | | | | | | F | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 45.5 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 53.8% | - 1 | CU Leve | el of Se | rvice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 6 HCM Unsignalized Intersection Capacity Analysis 7: Main Street & Forest Trail Saturday Peak - Alternative 4 10/12/2010 | | • | - | • | • | • | • | 4 | † | / | - | ţ | 4 | |--------------------------|-----------|------------|-------|------|------------|----------|-------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ↑ ↑ | | | €\$ | | | 4 | 7 | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 1175 | 20 | 15 | 720 | 70 | 20 | 0 | 25 | 145 | 5 | 35 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 1306 | 22 | 17 | 800 | 78 | 22 | 0 | 28 | 161 | 6 | 39 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | 1 | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 793 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 878 | | | 1328 | | | 1797 | 2272 | 664 | 1597 | 2244 | 439 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 878 | | | 1328 | | | 1797 | 2272 | 664 | 1597 | 2244 | 439 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 97 | | | 97 | | | 44 | 100 | 93 | 0 | 86 | 93 | | cM capacity (veh/h) | 765 | | | 516 | | | 40 | 37 | 403 | 63 | 39 | 566 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 22 | 870 | 457 | 17 | 533 | 344 | 50 | 206 | | | | | | Volume Left | 22 | 0 | 0 | 17 | 0 | 0 | 22 | 161 | | | | | | Volume Right | 0 | 0 | 22 | 0 | 0 | 78 | 28 | 39 | | | | | | cSH | 765 | 1700 | 1700 | 516 | 1700 | 1700 | 80 | 75 | | | | | | Volume to Capacity | 0.03 | 0.51 | 0.27 | 0.03 | 0.31 | 0.20 | 0.63 | 2.76 | | | | | | Queue Length 95th (ft) | 2 | 0 | 0 | 2 | 0 | 0 | 71 | 505 | | | | | | Control Delay (s) | 9.8 | 0.0 | 0.0 | 12.2 | 0.0 | 0.0 | 106.6 | 912.8 | | | | | | Lane LOS | Α | | | В | | | F | F | | | | | | Approach Delay (s) | 0.2 | | | 0.2 | | | 106.6 | 912.8 | | | | | | Approach LOS | | | | | | | F | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 77.4 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 54.7% | I | CU Lev | el of Se | rvice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 7 HCM Unsignalized Intersection Capacity Analysis 8: Main Street & Laurel Mountain Road Saturday Peak - Alternative 4 10/12/2010 | Movement | EBT | | | | | • | | | |-----------------------------|------------|------|-------|----------|---------|---------------|---|--| | | EDI | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | ↑ ↑ | | * | ^ | ¥ | | | | | Sign Control | Free | | • | Free | Stop | | | | | Grade | 0% | | | 0% | 0% | | | | | Volume (veh/h) | 1010 | 0 | 190 | 20 | 110 | 30 | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Hourly flow rate (vph) | 1122 | 0 | 211 | 22 | 122 | 33 | | | | Pedestrians | | | | | | | | | | Lane Width (ft) | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | Percent Blockage | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | Median type | | | | | None | | | | | Median storage veh) | | | | | | | | | | Upstream signal (ft) | | | | 505 | | | | | | pX, platoon unblocked | | | | | | | | | | vC, conflicting volume | | | 1122 | | 1556 | 561 | | | | vC1, stage 1 conf vol | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | vCu, unblocked vol | | | 1122 | | 1556 | 561 | | | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | | | tC, 2 stage (s) | | | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | | | p0 queue free % | | | 66 | | 0 | 93 | | | | cM capacity (veh/h) | | | 618 | | 68 | 471 | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | WB 3 | NB 1 | | | | Volume Total | 748 | 374 | 211 | 11 | 11 | 156 | | | | Volume Left | 0 | 0 | 211 | 0 | 0 | 122 | | | | Volume Right | 0 | 0 | 0 | 0 | 0 | 33 | | | | | 1700 | 1700 | 618 | 1700 | 1700 | 84 | | | | | 0.44 | 0.22 | 0.34 | 0.01 | 0.01 | 1.86 | | | | Queue Length 95th (ft) | 0 | 0 | 38 | 0 | 0 | 334 | | | | Control Delay (s) | 0.0 | 0.0 | 13.8 | 0.0 | 0.0 | 513.7 | | | | Lane LOS | | | В | | | F | | | | Approach Delay (s) | 0.0 | | 12.5 | | | 513.7 | | | | Approach LOS | | | | | | F | | | | Intersection Summary | | | | | | | | | | Average Delay | | | 54.8 | | | | | | | Intersection Capacity Utili | ization | | 56.4% | 10 | CU Leve | el of Service | В | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 9: Main Street & Old Mammoth Road Saturday Peak - Alternative 4 10/12/2010 | Movement | | - | • | • | • | 1 | / | | |--|------------------------|------------|------|-------|----------|--------|----------------|--| | Ideal Flow (vphpl) | Movement | | | | WBT | | NBR | | | Total Lost time (s) | | | 7 | ሻ | ^ | | 7 | | | Lane Util. Factor | | | | | | | | | | Fit 1.00 0.85 1.00 1.00 1.00 0.85 Fit Protected 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 3539 1583 1770 3539 1770 1583 Fit Permitted 1.00 1.00 0.37 1.00 0.95 1.00 Satd. Flow (perm) 3539 1583 690 3539 1770 1583 Volume (vph) 385 495 90 285 275 70 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 428 550 100 317 306 78 RTOR Reduction (vph) 0 381 0 0 0 47 Lane Group Flow (vph) 428 169 100 317 306 31 Turn Type Perm pmrtt Perm Perm Perm Perm Perm Perm Perm | | | | | | | | | | Fit Protected | Lane Util. Factor | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | Satd. Flow (prot) 3539 1583 1770 3539 1770 1583 Flt Permitted 1.00 1.00 0.37 1.00 0.95 1.00 Satd. Flow (perm) 3539 1583 690 3539 1770 1583 Volume (vph) 385 495 90 285 275 70 Peak-hour factor, PHF 0.90 | Frt | | | | | | | | | Fit Permitted | | | 1.00 | 0.95 | | 0.95 | | | | Satd. Flow (perm) 3539 1583 690 3539 1770 1583 | Satd. Flow (prot) | | | 1770 | 3539 | 1770 | 1583 | | | Volume (vph) 385 495 90 285 275 70 Peak-hour factor, PHF 0.90
0.90 <td>Flt Permitted</td> <td>1.00</td> <td>1.00</td> <td>0.37</td> <td>1.00</td> <td>0.95</td> <td></td> <td></td> | Flt Permitted | 1.00 | 1.00 | 0.37 | 1.00 | 0.95 | | | | Peak-hour factor, PHF | Satd. Flow (perm) | 3539 | 1583 | | | | | | | Adj. Flow (vph) 428 550 100 317 306 78 RTOR Reduction (vph) 0 381 0 0 0 47 Lane Group Flow (vph) 428 169 100 317 306 31 Turn Type Perm pm+pt Perm Perm Perm Perm Protected Phases 2 1 6 3 Actuated Green, G (s) 16.6 16.6 25.2 25.2 22.4 Effective Green, g (s) 17.5 17.5 26.1 23.0 23.0 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 | Volume (vph) | 385 | 495 | 90 | 285 | 275 | 70 | | | RTOR Reduction (vph) | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Lane Group Flow (vph) | Adj. Flow (vph) | 428 | 550 | 100 | 317 | 306 | 78 | | | Turn Type | RTOR Reduction (vph) | 0 | 381 | 0 | 0 | 0 | 47 | | | Protected Phases 2 | Lane Group Flow (vph) | 428 | 169 | 100 | 317 | 306 | 31 | | | Permitted Phases | Turn Type | | Perm | pm+pt | | | Perm | | | Actuated Green, G (s) 16.6 16.6 25.2 25.2 22.4 22.4 Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Actuated g/C Ratio Piez 0.49 4.9 4.1 4.9 4.6 4.6 Actuated Green, g (s) 4.9 4.9 4.1 4.9 4.6 4.6 Actuated Cycle Length (s) 16.8 485 402 1618 713 638 Actuated Cycle Length (s) 17.0 1.0 1.0 0.9 0.02 0.07 V/C Ratio 0.39 0.35 0.25 0.20 0.43 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | Protected Phases | 2 | | 1 | 6 | 3 | | | | Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 Lane Grp Cap (vph) 1085 485 402 1618 713 638 v/s Ratio Prot c0.12 c0.02 0.09 c0.17 v/s Ratio Prot 0.11 0.09 0.02 v/c Ratio 0.39 0.35 0.25 0.20 0.43 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 lncremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 Delay (s) 16.2 16.3 9.5 9.4 14.2 10.5 Level of Service B B A A B B Approach Delay (s) 16.3 9.4 13.5 Approach LOS B Approach CoS B A B A B B Intersection Summary HCM Average Control Delay HCM Volume to Capacity ratio Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization Analysis Period (min) 15 | Permitted Phases | | 2 | 6 | | | 3 | | | Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 5.2 5.2 Lane Grp Cap (vph) 1085 485 402 1618 713 638 V/s Ratio Prot c0.12 c0.02 0.09 c0.17 V/s Ratio Perm 0.11 0.09 0.20 0.09 c0.17 V/s Ratio Perm 0.39 0.35 0.25 0.20 0.43 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 Delay (s) 16.2 16.3 9.5 9.4 14.2 10.5 Level of Service B B A A B B A A B B A A B B A A B B A A B B A B A B B A B A B B A B A B B A B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B A B B B A B B B A B B B A B | Actuated Green, G (s) | 16.6 | 16.6 | 25.2 | 25.2 | 22.4 | 22.4 | | | Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 2.5 5.2 < | Effective Green, g (s) | 17.5 | 17.5 | 26.1 | 26.1 | 23.0 | 23.0 | | | Vehicle Extension (s) 5.2 | Actuated g/C Ratio | 0.31 | 0.31 | 0.46 | 0.46 | 0.40 | 0.40 | | | Lane Grp Cap (vph) 1085 485 402 1618 713 638 v/s Ratio Prot c0.12 c0.02 0.09 c0.17 v/s Ratio Prot 0.11 0.09 c0.17 v/s Ratio Prot 0.11 0.09 c0.17 v/s Ratio 0.39 0.35 0.25 0.20 0.43 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 0.1 0.1 0.0 1.0 | Clearance Time (s) | 4.9 | 4.9 | 4.1 | 4.9 | 4.6 | 4.6 | | | v/s Ratio Prot c0.12 c0.02 0.09 c0.17 v/s Ratio Perm 0.11 0.09 0.02 0.02 v/c Ratio 0.39 0.35 0.25 0.20 0.43 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 Delay (s) 16.2 16.3 9.5 9.4 14.2 10.5 Level of Service B B A A B B Approach LOS B A B B A B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio 0.40 A Service Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% | Vehicle Extension (s) | 5.2 | 5.2 | 2.5 | 5.2 | 5.2 | 5.2 | | | v/s Ratio Perm 0.11 0.09 0.02 v/c Ratio 0.39 0.35 0.25 0.20 0.43 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 Delay (s) 16.2 16.3 9.5 9.4 14.2 10.5 Level of Service B B A A B B Approach LOS B A B B A B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio 0.40 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% ICU Level of Service | Lane Grp Cap (vph) | 1085 | 485 | 402 | 1618 | 713 | 638 | | | v/c Ratio 0.39 0.35 0.25 0.20 0.43 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 Delay (s) 16.2 16.3 9.5 9.4 14.2 10.5 Level of Service B B A A B B Approach Delay (s) 16.3 9.4 13.5 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio 0.40 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% ICU Level of Service | v/s Ratio Prot | c0.12 | | c0.02 | 0.09 | c0.17 | | | | Uniform Delay, d1 15.6 15.4 9.2 9.2 12.3 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 1.9 0.1 Delay (s) 16.2 16.3 9.5 9.4 14.2 10.5 Level of Service B B B A A B B B Approach Delay (s) 16.3 9.4 13.5 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% ICU Level of Service | v/s Ratio Perm | | 0.11 | 0.09 | | | 0.02 | | | Progression Factor 1.00 <td>v/c Ratio</td> <td>0.39</td> <td>0.35</td> <td>0.25</td> <td>0.20</td> <td>0.43</td> <td>0.05</td> <td></td> | v/c Ratio | 0.39 | 0.35 | 0.25 | 0.20 | 0.43 | 0.05 | | | Incremental Delay, d2 | Uniform Delay, d1 | 15.6 | 15.4 | 9.2 | 9.2 | 12.3 | 10.4 | | | Delay (s) | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Level of Service B B A A B B Approach Delay (s) 16.3 9.4 13.5 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio 0.40 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% ICU Level of Service Analysis Period (min) 15 | Incremental Delay, d2 | | | | 0.1 | 1.9 | 0.1 | | | Approach Delay (s) 16.3 9.4 13.5 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio 0.40 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% ICU Level of Service Analysis Period (min) 15 | Delay (s) | 16.2 | 16.3 | 9.5 | 9.4 | 14.2 | 10.5 | | | Approach LOS B A B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio 0.40 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% ICU Level of Service Analysis Period (min) 15 | Level of Service | В | В | Α | Α | | В | | | Intersection Summary HCM Average Control Delay HCM Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) 14.0 HCM Level of Service HCM Level of Service Sum of lost time (s) ICU Level of Service | Approach Delay (s) | 16.3 | | | 9.4 | 13.5 | | | | HCM Average Control Delay 14.0 HCM Level of Service HCM Volume to Capacity ratio 0.40 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection
Capacity Utilization 42.3% ICU Level of Service Analysis Period (min) 15 | Approach LOS | В | | | Α | В | | | | HCM Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) 0.40 Sum of lost time (s) ICU Level of Service 15 | | | | | | | | | | Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 42.3% ICU Level of Service Analysis Period (min) 15 | | | | 14.0 | H | ICM Le | vel of Service | | | Intersection Capacity Utilization 42.3% ICU Level of Service Analysis Period (min) 15 | | | | | | | | | | Analysis Period (min) 15 | | | | | | | | | | | | tilization | | | 10 | CU Lev | el of Service | | | c Critical Lane Group | | | | 15 | | | | | | | c Critical Lane Group | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 9 HCM Unsignalized Intersection Capacity Analysis 10: Main Street & Sierra Park Boulevard Saturday Peak - Alternative 4 ____10/12/2010 | | ۶ | → | • | • | ← | • | 1 | † | / | - | ļ | 4 | |--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|----------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | , J | † } | | ٦ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 375 | 85 | 40 | 310 | 10 | 40 | 10 | 50 | 10 | 10 | 15 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 417 | 94 | 44 | 344 | 11 | 44 | 11 | 56 | 11 | 11 | 17 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | 544 | | | | | | | | | | | | pX, platoon unblocked | | | | 0.94 | | | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | | vC, conflicting volume | 356 | | | 511 | | | 769 | 931 | 256 | 731 | 972 | 178 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 356 | | | 422 | | | 696 | 866 | 151 | 654 | 911 | 178 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 99 | | | 96 | | | 84 | 96 | 93 | 96 | 95 | 98 | | cM capacity (veh/h) | 1200 | | | 1070 | | | 282 | 259 | 819 | 288 | 244 | 835 | | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 11 | 278 | 233 | 44 | 230 | 126 | 111 | 39 | | | | | | Volume Left | 11 | 0 | 0 | 44 | 0 | 0 | 44 | 11 | | | | | | Volume Right | 0 | 0 | 94 | 0 | 0 | 11 | 56 | 17 | | | | | | cSH | 1200 | 1700 | 1700 | 1070 | 1700 | 1700 | 414 | 374 | | | | | | Volume to Capacity | 0.01 | 0.16 | 0.14 | 0.04 | 0.14 | 0.07 | 0.27 | 0.10 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 3 | 0 | 0 | 27 | 9 | | | | | | Control Delay (s) | 8.0 | 0.0 | 0.0 | 8.5 | 0.0 | 0.0 | 16.9 | 15.7 | | | | | | Lane LOS | Α | | | Α | | | С | С | | | | | | Approach Delay (s) | 0.2 | | | 0.9 | | | 16.9 | 15.7 | | | | | | Approach LOS | | | | | | | С | С | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 2.8 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 35.3% | - 1 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | · ' | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 11: Tavern Road & Old Mammoth Road Saturday Peak - Alternative 4 10/12/2010 | | • | - | • | • | • | • | 1 | † | ~ | - | ↓ | 4 | |------------------------|------|------|------|------|------|------|------|----------|------|------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ٦ | ₽ | | ሻ | ₽ | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 30 | 10 | 55 | 5 | 10 | 15 | 65 | 375 | 5 | 10 | 710 | 50 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 33 | 11 | 61 | 6 | 11 | 17 | 72 | 417 | 6 | 11 | 789 | 56 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 760 | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 1422 | 1406 | 817 | 1442 | 1431 | 419 | 844 | | | 422 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1422 | 1406 | 817 | 1442 | 1431 | 419 | 844 | | | 422 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 65 | 91 | 84 | 93 | 91 | 97 | 91 | | | 99 | | | | cM capacity (veh/h) | 95 | 125 | 377 | 80 | 121 | 634 | 792 | | | 1137 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 106 | 33 | 72 | 422 | 11 | 844 | | | | | | | | Volume Left | 33 | 6 | 72 | 0 | 11 | 0 | | | | | | | | Volume Right | 61 | 17 | 0 | 6 | 0 | 56 | | | | | | | | cSH | 176 | 177 | 792 | 1700 | 1137 | 1700 | | | | | | | | Volume to Capacity | 0.60 | 0.19 | 0.09 | 0.25 | 0.01 | 0.50 | | | | | | | | Queue Length 95th (ft) | 82 | 17 | 8 | 0 | 1 | 0 | | | | | | | | Control Delay (s) | 52.4 | 29.9 | 10.0 | 0.0 | 8.2 | 0.0 | | | | | | | | Lane LOS | F | D | В | | Α | | | | | | | | | Approach Delay (s) | 52.4 | 29.9 | 1.5 | | 0.1 | | | | | | | | | Approach LOS | F | D | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 4.9 | | | | | | | | | | | Intersection Summary | | | | | |-----------------------------------|-------|----------------------|---|--| | Average Delay | 4.9 | | | | | Intersection Capacity Utilization | 63.8% | ICU Level of Service | В | | | Analysis Period (min) | 15 | | | | | | | | | | HCM Unsignalized Intersection Capacity Analysis Page 11 HCM Unsignalized Intersection Capacity Analysis 12: Sierra Nevada Road & Old Mammoth Road Saturday Peak - Alternative 4 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | / | > | ţ | 1 | |--------------------------|------------|----------|-------|------|----------|-----------|------|----------|----------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ሻ | î, | | ሻ | î, | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 15 | 85 | 20 | 20 | 35 | 75 | 445 | 5 | 45 | 685 | 45 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 17 | 94 | 22 | 22 | 39 | 83 | 494 | 6 | 50 | 761 | 50 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | 773 | | | | | | pX, platoon unblocked | 0.96 | 0.96 | | 0.96 | 0.96 | 0.96 | | | | 0.96 | | | | vC, conflicting volume | 1597 | 1553 | 786 | 1628 | 1575 | 497 | 811 | | | 500 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1620 | 1574 | 786 | 1652 | 1597 | 478 | 811 | | | 481 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 58 | 82 | 76 | 49 | 75 | 93 | 90 | | | 95 | | | | cM capacity (veh/h) | 53 | 90 | 392 | 44 | 88 | 566 | 815 | | | 1041 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 133 | 83 | 83 | 500 | 50 | 811 | | | | | | | | Volume Left | 22 | 22 | 83 | 0 | 50 | 0 | | | | | | | | Volume Right | 94 | 39 | 0 | 6 | 0 | 50 | | | | | | | | cSH | 158 | 101 | 815 | 1700 | 1041 | 1700 | | | | | | | | Volume to Capacity | 0.84 | 0.83 | 0.10 | 0.29 | 0.05 | 0.48 | | | | | | | | Queue Length 95th (ft) | 142 | 115 | 9 | 0 | 4 | 0 | | | | | | | | Control Delay (s) | 91.7 | 123.9 | 9.9 | 0.0 | 8.6 | 0.0 | | | | | | | | Lane LOS | F | F | Α | | Α | | | | | | | | | Approach Delay (s) | 91.7 | 123.9 | 1.4 | | 0.5 | | | | | | | | | Approach LOS | F | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 14.3 | | | | | | | | | | | Intersection Capacity Ut | tilizatior | 1 | 61.3% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 12 Town of Mammoth Lakes General Plan Mammoth Lakes (LSC#084870) LSC, Inc. (BP) LSC, Inc. HCM Unsignalized
Intersection Capacity Analysis 13: Meridian Boulevard & Majestic Pines Drive → → ← < ↓ √</p> Saturday Peak - Alternative 4 10/12/2010 | | | - | - | _ | * | • | | | |--------------------------|-----------|------|------------|------|---------|---------------|---|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | | 414 | ↑ } | | ¥ | | | | | Sign Control | | Free | Free | | Stop | | | | | Grade | | 0% | 0% | | 0% | | | | | Volume (veh/h) | 60 | 440 | 220 | 75 | 50 | 40 | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Hourly flow rate (vph) | 67 | 489 | 244 | 83 | 56 | 44 | | | | Pedestrians | | | | | | | | | | Lane Width (ft) | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | Percent Blockage | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | Median type | | | | | None | | | | | Median storage veh) | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | vC, conflicting volume | 328 | | | | 664 | 164 | | | | vC1, stage 1 conf vol | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | vCu, unblocked vol | 328 | | | | 664 | 164 | | | | tC, single (s) | 4.1 | | | | 6.8 | 6.9 | | | | tC, 2 stage (s) | | | | | | | | | | tF (s) | 2.2 | | | | 3.5 | 3.3 | | | | p0 queue free % | 95 | | | | 85 | 95 | | | | cM capacity (veh/h) | 1229 | | | | 372 | 852 | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | SB 1 | | | | | Volume Total | 230 | 326 | 163 | 165 | 100 | | | | | Volume Left | 67 | 0 | 0 | 0 | 56 | | | | | Volume Right | 0 | 0 | 0 | 83 | 44 | | | | | cSH | 1229 | 1700 | 1700 | 1700 | 497 | | | | | Volume to Capacity | 0.05 | 0.19 | 0.10 | 0.10 | 0.20 | | | | | Queue Length 95th (ft) | 4 | 0 | 0 | 0 | 19 | | | | | Control Delay (s) | 2.7 | 0.0 | 0.0 | 0.0 | 14.1 | | | | | Lane LOS | Α | | | | В | | | | | Approach Delay (s) | 1.1 | | 0.0 | | 14.1 | | | | | Approach LOS | | | | | В | | | | | Intersection Summary | | | | | | | | | | Average Delay | | | 2.1 | | | | | | | Intersection Capacity Ut | ilization | | 37.6% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 13 HCM Signalized Intersection Capacity Analysis 14: Meridian Boulevard & Minaret Road Saturday Peak - Alternative 4 10/12/2010 | | ۶ | - | • | • | — | • | 1 | † | ~ | / | ţ | 4 | |-------------------------|------------|------|-------|-------|------------|-----------|--------|------|------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ħβ | | ሻ | ↑ ↑ | | ሻ | ₽ | | ٦ | 4î | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.97 | | 1.00 | 0.94 | | 1.00 | 0.98 | | 1.00 | 0.98 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3417 | | 1770 | 3311 | | 1770 | 1831 | | 1770 | 1816 | | | Flt Permitted | 0.34 | 1.00 | | 0.40 | 1.00 | | 0.34 | 1.00 | | 0.42 | 1.00 | | | Satd. Flow (perm) | 629 | 3417 | | 751 | 3311 | | 637 | 1831 | | 777 | 1816 | | | Volume (vph) | 145 | 335 | 100 | 35 | 205 | 155 | 55 | 195 | 25 | 335 | 450 | 90 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 161 | 372 | 111 | 39 | 228 | 172 | 61 | 217 | 28 | 372 | 500 | 100 | | RTOR Reduction (vph) | 0 | 30 | 0 | 0 | 135 | 0 | 0 | 5 | 0 | 0 | 8 | 0 | | Lane Group Flow (vph) | 161 | 453 | 0 | 39 | 265 | 0 | 61 | 240 | 0 | 372 | 592 | 0 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | | pm+pt | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 24.3 | 18.5 | | 18.7 | 15.7 | | 25.0 | 22.0 | | 40.9 | 33.8 | | | Effective Green, g (s) | 25.3 | 19.4 | | 19.7 | 16.6 | | 26.0 | 22.9 | | 41.8 | 34.7 | | | Actuated g/C Ratio | 0.33 | 0.25 | | 0.26 | 0.22 | | 0.34 | 0.30 | | 0.55 | 0.45 | | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | | Vehicle Extension (s) | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | | Lane Grp Cap (vph) | 297 | 869 | | 235 | 720 | | 263 | 550 | | 620 | 826 | | | v/s Ratio Prot | c0.04 | 0.13 | | 0.01 | 0.08 | | 0.01 | 0.13 | | c0.12 | c0.33 | | | v/s Ratio Perm | c0.14 | | | 0.04 | | | 0.07 | | | 0.21 | | | | v/c Ratio | 0.54 | 0.52 | | 0.17 | 0.37 | | 0.23 | 0.44 | | 0.60 | 0.72 | | | Uniform Delay, d1 | 19.1 | 24.5 | | 21.5 | 25.4 | | 17.3 | 21.5 | | 10.6 | 16.8 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.6 | 1.1 | | 0.2 | 0.7 | | 0.3 | 1.2 | | 1.4 | 3.7 | | | Delay (s) | 20.7 | 25.5 | | 21.8 | 26.1 | | 17.7 | 22.7 | | 12.0 | 20.5 | | | Level of Service | С | С | | С | С | | В | С | | В | С | | | Approach Delay (s) | | 24.3 | | | 25.7 | | | 21.7 | | | 17.2 | | | Approach LOS | | С | | | С | | | С | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control I | Delay | | 21.3 | H | ICM Le | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | ty ratio | | 0.68 | | | | | | | | | | | Actuated Cycle Length | (s) | | 76.3 | S | Sum of le | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | | 66.2% | 10 | CU Leve | el of Ser | vice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 15: Meridian Boulevard & Old Mammoth Road Saturday Peak - Alternative 4 10/12/2010 | | • | - | • | • | • | • | 1 | Ť | _ | - | ¥ | 4 | |-------------------------|------------|------------|-------|-------|------------|-----------|-------|----------|------|-------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † } | | ľ | ↑ ↑ | | ۲ | † | 7 | ሻ | † | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 0.98 | | 1.00 | 0.97 | | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1770 | 3459 | | 1770 | 3446 | | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | | Flt Permitted | 0.34 | 1.00 | | 0.17 | 1.00 | | 0.27 | 1.00 | 1.00 | 0.44 | 1.00 | 1.00 | | Satd. Flow (perm) | 626 | 3459 | | 309 | 3446 | | 499 | 1863 | 1583 | 822 | 1863 | 1583 | | Volume (vph) | 190 | 700 | 125 | 110 | 375 | 80 | 145 | 260 | 55 | 125 | 345 | 65 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 211 | 778 | 139 | 122 | 417 | 89 | 161 | 289 | 61 | 139 | 383 | 72 | | RTOR Reduction (vph) | 0 | 16 | 0 | 0 | 20 | 0 | 0 | 0 | 43 | 0 | 0 | 51 | | Lane Group Flow (vph) | 211 | 901 | 0 | 122 | 486 | 0 | 161 | 289 | 18 | 139 | 383 | 21 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | Perm | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | 8 | 4 | | 4 | | Actuated Green, G (s) | 33.5 | 25.7 | | 28.5 | 23.2 | | 27.2 | 21.7 | 21.7 | 25.6 | 20.9 | 20.9 | | Effective Green, g (s) | 34.5 | 26.6 | | 29.5 | 24.1 | | 28.2 | 22.6 | 22.6 | 26.6 | 21.8 | 21.8 | | Actuated g/C Ratio | 0.46 | 0.35 | | 0.39 | 0.32 | | 0.37 | 0.30 | 0.30 | 0.35 | 0.29 | 0.29 | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | | Vehicle Extension (s) | 2.5 | 3.7 | | 2.5 | 3.8 | | 2.5 | 3.8 | 3.8 | 2.5 | 3.8 | 3.8 | | Lane Grp Cap (vph) | 406 | 1220 | | 226 | 1101 | | 281 | 558 | 474 | 350 | 539 | 458 | | v/s Ratio Prot | c0.05 | c0.26 | | 0.04 | 0.14 | | c0.04 | 0.16 | | 0.03 | c0.21 | | | v/s Ratio Perm | 0.18 | | | 0.17 | | | 0.17 | | 0.01 | 0.11 | | 0.01 | | v/c Ratio | 0.52 | 0.74 | | 0.54 | 0.44 | | 0.57 | 0.52 | 0.04 | 0.40 | 0.71 | 0.05 | | Uniform Delay, d1 | 13.1 | 21.4 | | 16.1 | 20.3 | | 17.3 | 21.9 | 18.7 | 17.4 | 24.0 | 19.3 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 8.0 | 2.5 | | 1.9 | 0.4 | | 2.3 | 1.0 | 0.0 | 0.5 | 4.6 | 0.1 | | Delay (s) | 13.9 | 23.8 | | 18.0 | 20.7 | | 19.6 | 22.9 | 18.7 | 17.9 | 28.6 | 19.4 | | Level of Service | В | С | | В | С | | В | С | В | В | С | В | | Approach Delay (s) | | 22.0 | | | 20.2 | | | 21.4 | | | 25.0 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 22.1 | | | | | | С | | | | | HCM Volume to Capaci | ty ratio | | 0.71 | | | | | | | | | | | Actuated Cycle Length | (s) | | 75.4 | S | Sum of I | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | 1 | 69.0% | 10 | CU Lev | el of Sei | vice | | С | | | | | A . I . D . I / . \ | | | 4.5 | | | | | | | | | | 15 HCM Unsignalized Intersection Capacity Analysis 16: Meridian Boulevard & Sierra Park Road Saturday Peak - Alternative 4 10/12/2010 | | ၨ | → | • | • | ← | • | 4 | † | / | - | ţ | 1 | |---------------------------|-----------|----------|-------|-------|----------|-----------|------|----------|----------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane
Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Stop | | | Stop | | | Volume (vph) | 45 | 145 | 5 | 5 | 140 | 15 | 25 | 5 | 5 | 15 | 5 | 75 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 50 | 161 | 6 | 6 | 156 | 17 | 28 | 6 | 6 | 17 | 6 | 83 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total (vph) | 131 | 86 | 83 | 94 | 39 | 106 | | | | | | | | Volume Left (vph) | 50 | 0 | 6 | 0 | 28 | 17 | | | | | | | | Volume Right (vph) | 0 | 6 | 0 | 17 | 6 | 83 | | | | | | | | Hadj (s) | 0.23 | -0.01 | 0.07 | -0.09 | 0.09 | -0.41 | | | | | | | | Departure Headway (s) | 5.2 | 5.0 | 5.1 | 5.0 | 5.0 | 4.5 | | | | | | | | Degree Utilization, x | 0.19 | 0.12 | 0.12 | 0.13 | 0.05 | 0.13 | | | | | | | | Capacity (veh/h) | 666 | 692 | 671 | 695 | 659 | 744 | | | | | | | | Control Delay (s) | 8.3 | 7.5 | 7.6 | 7.5 | 8.3 | 8.1 | | | | | | | | Approach Delay (s) | 8.0 | | 7.6 | | 8.3 | 8.1 | | | | | | | | Approach LOS | Α | | Α | | Α | Α | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Delay | | | 7.9 | | | | | | | | | | | HCM Level of Service | | | Α | | | | | | | | | | | Intersection Capacity Uti | ilization | | 26.5% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. Analysis Period (min) c Critical Lane Group HCM Signalized Intersection Capacity Analysis Page 15 LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 17: Chateau Road & Old Mammoth Road Saturday Peak - Alternative 4 10/12/2010 | | • | - | • | • | • | • | 4 | † | - | - | ţ | 4 | |--------------------------|-----------|------|-------|------|---------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | Ĭ | fa
fa | | ľ | ĵ» | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 30 | 35 | 10 | 10 | 20 | 60 | 10 | 305 | 10 | 105 | 375 | 75 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 33 | 39 | 11 | 11 | 22 | 67 | 11 | 339 | 11 | 117 | 417 | 83 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 1037 | | | pX, platoon unblocked | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | 0.97 | | | | | | | vC, conflicting volume | 1131 | 1064 | 458 | 1047 | 1100 | 344 | 500 | | | 350 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1135 | 1066 | 441 | 1049 | 1103 | 344 | 484 | | | 350 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 75 | 80 | 98 | 93 | 88 | 90 | 99 | | | 90 | | | | cM capacity (veh/h) | 131 | 193 | 597 | 152 | 183 | 698 | 1045 | | | 1209 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 83 | 100 | 11 | 350 | 117 | 500 | | | | | | | | Volume Left | 33 | 11 | 11 | 0 | 117 | 0 | | | | | | | | Volume Right | 11 | 67 | 0 | 11 | 0 | 83 | | | | | | | | cSH | 176 | 345 | 1045 | 1700 | 1209 | 1700 | | | | | | | | Volume to Capacity | 0.47 | 0.29 | 0.01 | 0.21 | 0.10 | 0.29 | | | | | | | | Queue Length 95th (ft) | 57 | 29 | 1 | 0 | 8 | 0 | | | | | | | | Control Delay (s) | 42.7 | 19.6 | 8.5 | 0.0 | 8.3 | 0.0 | | | | | | | | Lane LOS | Е | С | Α | | Α | | | | | | | | | Approach Delay (s) | 42.7 | 19.6 | 0.3 | | 1.6 | | | | | | | | | Approach LOS | Е | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 5.7 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 48.1% | 10 | CU Leve | el of Sei | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Ir | c (RP) | | | |---------|--------|-----------|------| | | | (LSC#0848 | 2701 | LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 17 HCM Unsignalized Intersection Capacity Analysis 18: Old Mammoth Road & Minaret Road Saturday Peak - Alternative 4 10/12/2010 | • | - | • | • | ← | • | 1 | † | ~ | - | Ţ | 4 | |----------|---|--|--------------------------|---|--|--|---|---|---|---|---| | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | ሻ | -1 | | ሻ | ₽ | | | ર્ન | 7 | 7 | 4î | | | | Free | | | Free | | | Stop | | | Stop | | | | 0% | | | 0% | | | 0% | | | 0% | | | 110 | 175 | 45 | 135 | 200 | 95 | 20 | 65 | 90 | 105 | 155 | 200 | | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 122 | 194 | 50 | 150 | 222 | 106 | 22 | 72 | 100 | 117 | 172 | 222 | 2 | | | | | | | | | | | | None | | | None | 328 | | | 244 | | | 1294 | 1092 | 219 | 1100 | 1064 | 275 | 328 | | | 244 | | | 1294 | 1092 | 219 | 1100 | 1064 | 275 | | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | | | | | | | | | | | | | | | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | 90 | | | 89 | | | 0 | 58 | 88 | 0 | 3 | 71 | | 1232 | | | 1322 | | | 10 | 171 | 820 | 96 | 178 | 764 | | FB 1 | FB 2 | WB 1 | WB 2 | NB 1 | SB 1 | SB 2 | - | | | | | | | | | | | | | | | - | 0.0 | | 0.0 | 2.7 | | 2.0 | | F | F | 76.0 | | | | | | | | | | | lization | | 53.2% | 10 | CU Lev | el of Se | rvice | | Α | | | | | | | 15 | | | | | | | | | | | | 110
0.90
122
328
4.1
2.2
90 | BBL BBT Free 0% 0.90 0.90 0.90 122 194 328 328 4.1 2.2 90 1232 122 244 122 20 0 50 1232 1700 0.10 0.14 8 0 8.2 0.0 A 2.7 | BBL BBT BBR Free 0% | BEL EBT EBR WBL Free 0% 110 175 45 135 0.90 0.90 0.90 0.90 122 194 50 150 328 244 4.1 4.1 2.2 2.2 2.2 90 8.9 1232 1322 EB1 EB2 WB1 WB2 122 244 150 328 122 0 150 0 0 50 0 106 1232 1700 1322 1700 0.10 0.14 0.11 0.19 8 0 10 0 8.2 0.0 8.1 0.0 A A A 2.7 2.5 | BBL BBT BBR WBL WBT Free 0% 0% 0.90 0.90 0.90 0.90 0.90 0.90 0.9 | BBL BBT BBR WBL WBT WBR Free 0% 0% 0.90 0.90 0.90 0.90 0.90 0.90 0.9 | EBL EBT EBR WBL WBT WBR NBL Free 0% | EBL EBT EBR WBL WBT WBR NBL NBT Free Free Stop 0% 0.90 0.92 1.90 0.92 1.90 0.92 1.90 1.90 0.94 1.90 1.90 1.90 1.90 0.94 1.90 1.90 | EBL EBT EBR WBL WBT WBR NBL NBT NBR Free | EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL Free | EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Free | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 18 # Future - Alternative 5 LOS Reports HCM Unsignalized Intersection Capacity Analysis 1: Forest Trail & Minaret Road Saturday Peak - Alternative 5 10/12/2010 Page 1 | Lane Configurations | | ۶ | - | • | • | • | • | 4 | † | - | -
 ţ | 4 | |--|------------------------|-----------|------|------|------|--------|-----------|------|----------|------|------|------|------| | Sign Control Stop Stop Free Free Grade O% | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | Lane Configurations | | 4 | | | 4 | | | 4 | | | 4 | | | Volume (veh/h) | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Peak Hour Factor | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Hourly flow rate (vph) 22 33 100 22 22 17 78 194 33 89 739 111 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type | Volume (veh/h) | 20 | 30 | 90 | 20 | 20 | 15 | 70 | 175 | 30 | 80 | 665 | 100 | | Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 8) IC, single (s) IC, 2 stage (s) IC, 2 stage (s) IC (s) Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total I56 61 306 939 Volume Right I00 17 33 111 CSH 203 101 788 1340 Volume Right Control Delay (s) GA1 83.7 3.4 1.7 Approach LOS F F Intersection Summary Average Delay Intersection Capacity Utilization Mone None | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, stage 2 conf vol vC4, stage 2 conf vol vC5, stage 1 conf vol vC6, stage 1 conf vol vC7, stage 1 conf vol vC8, stage 2 conf vol vC9, vC1, stage 1 storage 2 conf vol vC1, stage 2 conf vol vC1, stage 1 storage vC1, stor | Hourly flow rate (vph) | 22 | 33 | 100 | 22 | 22 | 17 | 78 | 194 | 33 | 89 | 739 | 111 | | Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) Dyx, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC4, single (s) T, 1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 T, 2 stage (s) F (s) T | | | | | | | | | | | | | | | Percent Biockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) V. Jatoon unblocked V.C. conflicting volume 1367 1356 794 1456 1394 211 850 228 V.C.1, stage 1 conf vol V.C.2, stage 2 conf vol V.C.2, stage (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 I.C. 2 stage (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 3.8 5.6 1.1 | | | | | | | | | | | | | | | Right turn flare (veh) Median type | | | | | | | | | | | | | | | Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1367 1356 794 1456 1394 211 850 228 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vol 1367 1356 794 1456 1394 211 850 228 tC, stage (s) r.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) r.5 r.6 r.7 7.4 6.0 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 156 61 306 939 Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity | | | | | | | | | | | | | | | Median storage veh) Upstream signal (ft) pX, platoon unblocked vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1367 1356 794 1456 1394 211 850 228 tC, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) tF (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 2.2 pp 90 93 | | | | | | | | | | | | | | | Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1367 1356 794 1456 1394 211 850 228 VC1, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1367 1356 794 1456 1394 211 850 228 UC1, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 UC1, 2 stage (s) UC2, stage (s) UC3, stage (s) UC3, stage (s) UC4, stage (s) UC5, stage (s) UC6, stage (s) UC7, (| | | None | | | None | | | | | | | | | pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol 1367 1356 794 1456 1394 211 850 228 tC5, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC7, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 76 73 74 60 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 20 20 20 20 20 20 20 20 20 20 20 20 20 | | | | | | | | | | | | | | | VC, conflicting volume 1367 1356 794 1456 1394 211 850 228 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage (s) | | | | | | | | | | | | | | | vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1367 1356 794 1456 1394 211 850 228 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 76 73 74 60 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 156 61 306 939 Volume Left 22 22 78 89 Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | | | | | | | | | | | | VCQ, stage 2 conf vol VCU, unblocked vol 1367 1356 794 1456 1394 211 850 228 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 76 73 74 60 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 156 61 306 939 Volume Left 22 22 78 89 Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity 0 .76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach LOS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | 1367 | 1356 | 794 | 1456 | 1394 | 211 | 850 | | | 228 | | | | vCu, unblocked vol 1367 1356 794 1456 1394 211 850 228 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tr (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 76 73 74 60 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 Direction, Lane # EB 1 WB 1 NB 1 SB | | | | | | | | | | | | | | | tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 76 73 74 60 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 156 61 306 939 Volume Left 22 22 78 89 Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach LoS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | | | | | | | | | | | | tC, 2 stage (s) tF (s) | | | | | | | | | | | | | | | tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 76 73 74 60 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 156 61 306 939 Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A A Approach LOS F F Intersection Summary Average Delay 12.1
Intersection Capacity Utilization 65.1% ICU Level of Service C | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | p0 queue free % 76 73 74 60 81 98 90 93 cM capacity (veh/h) 92 126 388 56 119 829 788 1340 Direction, Lane # EB 1 WB 1 NB 1 SB 1 | | | | | | | | | | | | | | | Direction, Lane # EB 1 WB 1 NB 1 SB 1 | | | | | | | | | | | | | | | Direction, Lane # EB 1 WB 1 NB 1 SB 1 | | | | | | | | | | | | | | | Volume Total 156 61 306 939 Volume Left 22 22 78 89 Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F F Intersection Summary Value of Service C | cM capacity (veh/h) | 92 | 126 | 388 | 56 | 119 | 829 | 788 | | | 1340 | | | | Volume Left 22 22 78 89 Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | | | | | | | | | | | | Volume Right 100 17 33 111 cSH 203 101 788 1340 Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | Volume Total | 156 | | | | | | | | | | | | | CSH 203 101 788 1340 Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | Volume Left | | | | | | | | | | | | | | Volume to Capacity 0.76 0.60 0.10 0.07 Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A A Approach LOS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | | | | | | | | | | | | Queue Length 95th (ft) 130 72 8 5 Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | 101 | 788 | 1340 | | | | | | | | | | Control Delay (s) 64.1 83.7 3.4 1.7 Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | 0.10 | 0.07 | | | | | | | | | | Lane LOS F F A A Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | | | | | | | | | | | | Approach Delay (s) 64.1 83.7 3.4 1.7 Approach LOS F F F Intersection Summary Verage Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | | | | | | | | | | | | Approach LOS F F Intersection Summary Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | | | | | | | | | | | | Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | | | | 3.4 | 1.7 | | | | | | | | | | Average Delay 12.1 Intersection Capacity Utilization 65.1% ICU Level of Service C | Approach LOS | F | F | | | | | | | | | | | | Intersection Capacity Utilization 65.1% ICU Level of Service C | Intersection Summary | | | | | | | | | | | | | | | Average Delay | | | | | | | | | | | | | | Analysis Period (min) 15 | | ilization | 1 | | 10 | CU Lev | el of Ser | vice | | С | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) HCM Unsignalized Intersection Capacity Analysis Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 2: Lake Mary Road & Davidson Saturday Peak - Alternative 5 10/12/2010 | | ۶ | - | • | • | ← | • | 1 | † | / | - | ļ | 4 | |--------------------------|-----------|------|-------|------|----------|-----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | | 4 | | | 4 | | | ની | 7 | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 0 | 95 | 15 | 80 | 95 | 45 | 10 | 0 | 65 | 65 | 0 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 0 | 106 | 17 | 89 | 106 | 50 | 11 | 0 | 72 | 72 | 0 | 6 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 156 | | | 122 | | | 428 | 447 | 114 | 458 | 431 | 131 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 156 | | | 122 | | | 428 | 447 | 114 | 458 | 431 | 131 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 100 | | | 94 | | | 98 | 100 | 92 | 84 | 100 | 99 | | cM capacity (veh/h) | 1425 | | | 1465 | | | 509 | 476 | 939 | 451 | 486 | 919 | | Direction. Lane # | EB 1 | WB 1 | NB 1 | SB 1 | | | | | | | | | | Volume Total | 122 | 244 | 83 | 78 | | | | | | | | | | Volume Left | 0 | 89 | 11 | 72 | | | | | | | | | | Volume Right | 17 | 50 | 72 | 6 | | | | | | | | | | cSH | 1425 | 1465 | 1083 | 468 | | | | | | | | | | Volume to Capacity | 0.00 | 0.06 | 0.08 | 0.17 | | | | | | | | | | Queue Length 95th (ft) | 0.00 | 5 | 6 | 15 | | | | | | | | | | Control Delay (s) | 0.0 | 3.1 | 9.6 | 14.2 | | | | | | | | | | Lane LOS | | Α | A | В | | | | | | | | | | Approach Delay (s) | 0.0 | 3.1 | 9.6 | 14.2 | | | | | | | | | | Approach LOS | | | Α | В | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 5.0 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 36.1% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 3: Lake Mary Road & Canyon Boulevard **≠ - ← ← ← √** Saturday Peak - Alternative 5 10/12/2010 | | | - | - | _ | * | * | | | | |-------------------------|------------|---------|---------|------|---------|---------------|---|-----|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | | Lane Configurations | ሻ | <u></u> | <u></u> | 7 | ሻሻ | | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 3431 | | | | | | Flt Permitted | 0.59 | 1.00 | 1.00 | 1.00 | 0.95 | | | | | | Satd. Flow (perm) | 1103 | 1863 | 1863 | 1583 | 3431 | | | | | | Volume (vph) | 20 | 210 | 245 | 230 | 490 | 15 | | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Adj. Flow (vph) | 22 | 233 | 272 | 256 | 544 | 17 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 109 | 7 | 0 | | | | | Lane Group Flow (vph) | 22 | 233 | 272 | 147 | 554 | 0 | | | | | Turn Type | Perm | | | Perm | | | | | | | Protected Phases | | 2 | 6 | | 4 | | | | | | Permitted Phases | 2 | | | 6 | | | | | | | Actuated Green, G (s) | 25.2 | 25.2 | 25.2 | 25.2 | 11.1 | | | | | | Effective Green, g (s) | 25.8 | 25.8 | 25.8 | 25.8 | 11.2 | | | | | | Actuated g/C Ratio | 0.57 | 0.57 | 0.57 | 0.57 | 0.25 | | | | | | Clearance Time (s) | 4.6 | 4.6 | 4.6 | 4.6 | 4.1 | | | | | | Vehicle Extension (s) | 6.1 | 6.1 | 6.1 | 6.1 | 2.0 | | | | | | Lane Grp Cap (vph) | 632 | 1068 | 1068 | 908 | 854 | | | | | | v/s Ratio Prot | | 0.13 | c0.15 | | c0.16 | | | | | | v/s Ratio Perm | 0.02 | | | 0.09 | | | | | | | v/c Ratio | 0.03 | 0.22 | 0.25 | 0.16 | 0.65 | | | | | | Uniform Delay, d1 | 4.2 | 4.7 | 4.8 | 4.5 | 15.1 | | | | | | Progression Factor | 1.00 | 1.00 | 0.42 | 0.81 | 1.00 | | | | | | Incremental Delay, d2 | 0.1 | 0.5 | 0.5 | 0.3 | 1.3 | | | | | | Delay (s) | 4.3 | 5.2 | 2.5 | 3.9 | 16.4 | | | | | | Level of Service | Α | Α | Α | Α | В | | | | | | Approach Delay (s) | | 5.1 | 3.2 | | 16.4 | | | | | | Approach LOS | | Α | Α | | В | | | | | | Intersection Summary | | | | | | | | | | | HCM Average Control D | | | 9.1 | H | ICM Lev | el of Service | | Α | | | HCM Volume to Capaci | | | 0.37 | | | | | | | | Actuated Cycle Length | | | 45.0 | | | ost time (s) | 8 | 3.0 | | | Intersection Capacity U | tilization | | 37.7% | 10 | CU Leve | el of Service | | Α | | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 3 HCM Signalized Intersection Capacity Analysis 4: Lake Mary Road & Minaret Road Saturday Peak - Alternative 5 10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | _ | / | ļ | 4 | |-------------------------|------------|----------|-------|-------|----------|----------|--------|----------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ^ | 7 | ሻ | ^ |
7 | ሻ | ↑ | 7 | ሻሻ | ₽ | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | | | Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3539 | 1583 | 1770 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1670 | | | Flt Permitted | 0.37 | 1.00 | 1.00 | 0.31 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 696 | 3539 | 1583 | 581 | 3539 | 1583 | 1770 | 1863 | 1583 | 3433 | 1670 | | | Volume (vph) | 110 | 445 | 155 | 75 | 340 | 135 | 370 | 290 | 90 | 520 | 60 | 135 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 122 | 494 | 172 | 83 | 378 | 150 | 411 | 322 | 100 | 578 | 67 | 150 | | RTOR Reduction (vph) | 0 | 0 | 78 | 0 | 0 | 118 | 0 | 0 | 69 | 0 | 89 | 0 | | Lane Group Flow (vph) | 122 | 494 | 94 | 83 | 378 | 32 | 411 | 322 | 31 | 578 | 128 | 0 | | Turn Type | pm+pt | | Perm | pm+pt | | Perm | Split | | Perm | Split | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 8 | 8 | | 7 | 7 | | | Permitted Phases | 2 | | 2 | 6 | | 6 | | | 8 | | | | | Actuated Green, G (s) | 25.6 | 19.6 | 19.6 | 23.2 | 18.4 | 18.4 | 27.1 | 27.1 | 27.1 | 20.0 | 20.0 | | | Effective Green, g (s) | 26.6 | 20.5 | 20.5 | 24.2 | 19.3 | 19.3 | 28.0 | 28.0 | 28.0 | 20.6 | 20.6 | | | Actuated g/C Ratio | 0.30 | 0.23 | 0.23 | 0.27 | 0.21 | 0.21 | 0.31 | 0.31 | 0.31 | 0.23 | 0.23 | | | Clearance Time (s) | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.6 | 4.6 | | | Vehicle Extension (s) | 2.5 | 4.7 | 4.7 | 2.5 | 4.6 | 4.6 | 5.2 | 5.2 | 5.2 | 6.2 | 6.2 | | | Lane Grp Cap (vph) | 279 | 806 | 361 | 221 | 759 | 339 | 551 | 580 | 492 | 786 | 382 | | | v/s Ratio Prot | c0.03 | c0.14 | | 0.02 | 0.11 | | c0.23 | 0.17 | | c0.17 | 0.08 | | | v/s Ratio Perm | 0.10 | | 0.06 | 0.08 | | 0.02 | | | 0.02 | | | | | v/c Ratio | 0.44 | 0.61 | 0.26 | 0.38 | 0.50 | 0.09 | 0.75 | 0.56 | 0.06 | 0.74 | 0.33 | | | Uniform Delay, d1 | 24.2 | 31.2 | 28.5 | 25.5 | 31.1 | 28.3 | 27.8 | 25.8 | 21.8 | 32.2 | 29.0 | | | Progression Factor | 0.83 | 0.84 | 0.87 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.7 | 3.0 | 1.5 | 0.8 | 2.3 | 0.6 | 8.9 | 3.8 | 0.2 | 6.1 | 2.3 | | | Delay (s) | 20.9 | 29.1 | 26.4 | 26.3 | 33.4 | 28.9 | 36.7 | 29.6 | 22.0 | 38.2 | 31.3 | | | Level of Service | С | С | С | С | С | С | D | С | С | D | С | | | Approach Delay (s) | | 27.2 | | | 31.3 | | | 32.2 | | | 36.3 | | | Approach LOS | | С | | | С | | | С | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 31.8 | H | ICM Le | vel of S | ervice | | С | | | | | HCM Volume to Capaci | ity ratio | | 0.66 | | | | | | | | | | | Actuated Cycle Length | (s) | | 90.0 | 5 | Sum of I | ost time | (s) | | 12.0 | | | | | Intersection Capacity U | tilizatior | 1 | 62.6% | 10 | CU Leve | el of Se | rvice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 5: Main Street & Mountain Boulevard Saturday Peak - Alternative 5 10/12/2010 | | • | → | • | € | ← | • | 1 | † | / | - | ţ | 4 | |--------------------------|-----------|----------|-------|------|----------|----------|------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 30 | 1280 | 65 | 30 | 600 | 95 | 10 | 25 | 20 | 60 | 20 | 60 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 33 | 1422 | 72 | 33 | 667 | 106 | 11 | 28 | 22 | 67 | 22 | 67 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 772 | | | 1494 | | | 2003 | 2364 | 747 | 1600 | 2347 | 386 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 772 | | | 1494 | | | 2003 | 2364 | 747 | 1600 | 2347 | 386 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 96 | | | 93 | | | 11 | 10 | 94 | 0 | 30 | 89 | | cM capacity (veh/h) | 839 | | | 445 | | | 13 | 31 | 355 | 14 | 32 | 612 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total | 744 | 783 | 367 | 439 | 61 | 156 | | | | | | | | Volume Left | 33 | 0 | 33 | 0 | 11 | 67 | | | | | | | | Volume Right | 0 | 72 | 0 | 106 | 22 | 67 | | | | | | | | cSH | 839 | 1700 | 445 | 1700 | 33 | 28 | | | | | | | | Volume to Capacity | 0.04 | 0.46 | 0.07 | 0.26 | 1.85 | 5.64 | | | | | | | | Queue Length 95th (ft) | 3 | 0 | 6 | 0 | 171 | Err | | | | | | | | Control Delay (s) | 1.0 | 0.0 | 2.4 | 0.0 | 662.8 | Err | | | | | | | | Lane LOS | Α | | Α | | F | F | | | | | | | | Approach Delay (s) | 0.5 | | 1.1 | | 662.8 | Err | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 626.5 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 80.4% | I | CU Leve | el of Se | vice | | D | | | | | Analysis Period (min) | | | 15 | HCM Unsignalized Intersection Capacity Analysis Page 5 HCM Unsignalized Intersection Capacity Analysis 6: Main Street & Center Street Saturday Peak - Alternative 5 10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | ~ | - | ļ | 4 | |--------------------------|-----------|------------|-------|------|------------|----------|-------|----------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 75 | 1025 | 0 | 95 | 40 | 695 | 45 | 10 | 95 | 40 | 0 | 35 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 83 | 1139 | 0 | 106 | 44 | 772 | 50 | 11 | 106 | 44 | 0 | 39 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | 1207 | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 817 | | | 1139 | | | 1578 | 2333 | 569 | 1489 | 1947 | 408 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 817 | | | 1139 | | | 1578 | 2333 | 569 | 1489 | 1947 | 408 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 90 | | | 83 | | | 9 | 59 | 77 | 0 | 100 | 93 | | cM capacity (veh/h) | 807 | | | 609 | | | 55 | 27 | 465 | 37 | 47 | 592 | | Direction, Lane # | EB 1 | EB 2 | EB 3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 83 | 759 | 380 | 106 | 30 | 787 | 167 | 83 | | | | | | Volume Left | 83 | 0 | 0 | 106 | 0 | 0 | 50 | 44 | | | | | | Volume Right | 0 | 0 | 0 | 0 | 0 | 772 | 106 | 39 | | | | | | cSH | 807 | 1700 | 1700 | 609 | 1700 | 1700 | 108 | 65 | | | | | | Volume to Capacity | 0.10 | 0.45 | 0.22 | 0.17 | 0.02 | 0.46 | 1.55 | 1.28 | | | | | | Queue Length 95th (ft) | 9 | 00 | 0.22 | 16 | 0.02 | 00 | 310 | 171 | | | | | | Control Delay (s) | 10.0 | 0.0 | 0.0 | 12.1 | 0.0 | 0.0 | 357.4 | 311.5 | | | | | | Lane LOS | Α | | | В | | | F | F | | | | | | Approach Delay (s) | 0.7 | | | 1.4 | | | 357.4 | 311.5 | | | | | | Approach LOS | | | | | | | F | F | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 36.6 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 53.1% | 10 | CU Leve | el of Se | rvice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | ` ' | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 6 Mammoth Lakes (LSC#084870) LSC, Inc. (BP) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 7: Main Street & Forest Trail Saturday Peak - Alternative 5 10/12/2010 | Lane Configurations The precessing Control Free Free Stop Stop Stop O% O% O% O% O% O% O% O | | ۶ | - | • | • | ← | • | 4 | † | / | - | ţ | 4 |
--|--------------------------|-----------|------|-------|------|------------|-----------|-------|----------|------|------|------|------| | Sign Control Free | Movement | | | EBR | | | WBR | NBL | | NBR | SBL | | SBR | | Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | Lane Configurations | 7 | | | ሻ | ↑ ↑ | | | 4 | | | ર્ન | 7 | | Volume (veh/h) | Sign Control | | | | | | | | | | | | | | Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9 | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Hourly flow rate (vph) | Volume (veh/h) | 20 | 1140 | 20 | 15 | 700 | 70 | 20 | 0 | 20 | 140 | 5 | 35 | | Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 2 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol S56 1289 1747 2211 644 1550 2183 428 VC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol S56 1289 1747 2211 644 1550 2183 428 VC1, stage 3 1747 2211 644 1550 2183 428 VC1, stage 6 1289 1747 2211 644 1550 2183 428 VC1, stage 1 1747 2211 644 1550 2183 428 VC1, stage 2 1747 2211 644 1550 2183 428 VC1, stage 3 1747 2211 644 1550 2183 428 VC2, stage 2 1644 | Peak Hour Factor | 0.90 | | 0.90 | 0.90 | | 0.90 | 0.90 | 0.90 | 0.90 | | 0.90 | 0.90 | | Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC4, stage 2 conf vol vC5, stage 1 conf vol vC6, stage 1 conf vol vC7, stage 1 conf vol vC8, stage 1 conf vol vC9, stage 2 conf vol vC9, stage 1 conf vol vC9, stage 2 conf vol vC9, stage 2 conf vol vC9, stage 1 conf vol vC9, stage 1 conf vol vC9, stage 2 1 conf vol vC9, stage 2 conf vol vC1, stage 1 vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 4 conf vol vC1, stage 1 conf vol vC2, stage 4 conf vol vC1, stage 1 | Hourly flow rate (vph) | 22 | 1267 | 22 | 17 | 778 | 78 | 22 | 0 | 22 | 156 | 6 | 39 | | Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) Dys. platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 8 to 1 289 1747 2211 644 1550 2183 428 tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC, 2 stage (s) tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 97 50 100 95 0 87 93 cM capacity (veh/h) 780 534 44 41 415 70 43 575 Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 22 844 444 17 519 337 44 200 Volume Left 22 0 0 17 0 0 22 156 Volume Right 0 0 22 0 0 78 22 39 cSH 780 1700 1700 534 1700 1700 80 83 Volume Right 0 0 22 0 0 61 467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4 Lane LOS A B F F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F ICU Level of Service A | | | | | | | | | | | | | | | Percent Blockage Right turn flare (veh) None None Median type None Median storage veh) Upstream signal (ft) 793 pX, platoon unblocked vC, conflicting volume 856 1289 1747 2211 644 1550 2183 428 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol 856 1289 1747 2211 644 1550 2183 428 tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 <td></td> | | | | | | | | | | | | | | | Right turn flare (veh) Median type | | | | | | | | | | | | | | | Median type None None Median storage veh) Typa Upstream signal (ft) 793 pX, platoon unblocked vC, conflicting volume 856 1289 1747 2211 644 1550 2183 428 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 8) 1747 2211 644 1550 2183 428 tC, 2 stage (s) vC1, stage (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 6.5 6.9 7.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | | | | Median storage veh) Upstream signal (ft) by, platoon unblocked vC, conflicting volume 856 1289 1747 2211 644 1550 2183 428 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 tC, 2 stage (s) tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 97 50 100 95 0 87 93 confection, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 22 844 444 17 519 337 44 200 Volume Right 0 0 22 0 0 170 0 22 39 cSH 780 1700 1700 534 1700 1700 80 83 | | | | | | | | | | | | | 1 | | Upstream signal (ft) | | | | | | | | | None | | | None | | | pX, platoon unblocked vC, conflicting volume 856 1289 1747 2211 644 1550 2183 428 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 856 1289 1747 2211 644 1550 2183 428 vC2, stage 2 conf vol vCu, unblocked vol 856 1289 1747 2211 644 1550 2183 428 vC2, stage (s) tE (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 vC, 2 stage (s) tE (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 9.0 queue free % 97 97 50 100 95 0 87 93 vCM capacity (veh/h) 780 534 44 44 41 415 70 43 575 vCM capacity (veh/h) 780 534 88 1 88 1 Volume Total 22 844 444 17 519 337 44 200 VOlume Left 22 0 0 17 0 0 22 156 vCM | | | | | | | | | | | | | | | VC, conflicting volume | | | | | | 793 | | | | | | | | | vC1, stage 1 conf vol
vC2, stage 2 conf vol
vC2, unblocked vol 856 1289 1747 2211 644 1550 2183 428
tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9
tC, 2 stage (s)
tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3
pO queue free % 97 97 50 100 95 0 87 93
cM capacity (veh/h) 780 534 44 41 415 70 43 575
Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1
Volume Total 22 844 444 17 519 337 44 200
Volume Left 22 0 0 17 0 0 22 156
Volume Right 0 0 22 0 0 78 22 39
cSH 780 1700 1700 534 1700 1700 80 83
Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42
Queue Length 95th (ft) 2 0 0 2 0 0 61 467
Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4
Lane LOS A B F F
Approach LOS F F | | | | | | | | | | | | | | | VCQ, stage 2 conf vol
VCU, unblocked vol 856 1289 1747 2211 644 1550 2183 428
tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9
tC, 2 stage (s)
tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3
p0 queue free % 97 97 50 100 95 0 87 93
cM capacity (veh/h) 780 534 WB 2 WB 3 NB1 SB1
Volume Total 22 844 444 17 519 337 44 200
Volume Right 0 0 22 0 0 17 0 0 22 156
Volume Right 0 0 0 22 0 0 78 22 39
cSH 780 1700 1700 534 1700 1700 80 83
Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42
Queue Length 95th (ft) 2 0 0 2 0 0 61 467
Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4
Lane LOS A B F F
Approach Delay (s) 0.2 0.2 96.4 755.4
Approach Delay (s) 0.2 0.2 96.4 755.4
Approach LOS Intersection
Summary Average Delay 64.2
Intersection Capacity Utilization 52.7% ICU Level of Service A | | 856 | | | 1289 | | | 1747 | 2211 | 644 | 1550 | 2183 | 428 | | VCu, unblocked vol 856 1289 1747 2211 644 1550 2183 428 (C, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 (C, 2 stage (s)) If (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 9.0 Queue free % 97 97 50 100 95 0 87 93 QM capacity (veh/h) 780 534 44 41 415 70 43 575 Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 22 844 444 17 519 337 44 200 Volume Left 22 0 0 17 0 0 22 156 Volume Right 0 0 22 0 0 78 22 39 CSH 780 1700 1700 80 83 Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42 Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Queue Length 95th (ft) 2 0 0 2 0 0 64 755.4 Lane LOS A B F F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | vC1, stage 1 conf vol | | | | | | | | | | | | | | tC, single (s) 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 (C, 2 stage (s)) tC, 2 stage (s) (s | vC2, stage 2 conf vol | | | | | | | | | | | | | | IC, 2 stage (s) IF (s) | | | | | | | | | | | | | | | tF (s) | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | p0 queue free % 97 97 97 50 100 95 0 87 93 cM capacity (veh/h) 780 534 44 41 415 70 43 575 Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 Volume Total 22 844 444 17 519 337 44 200 Volume Left 22 0 0 17 0 0 22 156 Volume Right 0 0 22 0 0 78 22 39 cSH 780 1700 1700 534 1700 1700 80 83 Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42 Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4 Lane LOS A B F F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | tC, 2 stage (s) | | | | | | | | | | | | | | Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 WB 3 NB 1 SB 1 | | | | | | | | | | | | | | | Direction, Lane # | | | | | | | | | | | | | | | Volume Total 22 844 444 17 519 337 44 200 Volume Left 22 0 0 17 0 0 22 156 Volume Right 0 0 22 0 0 78 22 39 cSH 780 1700 1700 534 1700 1700 80 83 Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42 Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4 Lane LOS A B F F F Approach LOS F F F F Intersection Summary A 8 10.2 96.4 755.4 Average Delay 64.2 1 1 | cM capacity (veh/h) | 780 | | | 534 | | | 44 | 41 | 415 | 70 | 43 | 575 | | Volume Left 22 0 0 17 0 0 22 156 Volume Right 0 0 22 0 0 78 22 39 cSH 780 1700 1700 534 1700 1700 80 83 Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42 Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 96.4 755.4 Lane LOS A B F F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Direction, Lane # | EB 1 | EB 2 | EB3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Right 0 0 22 0 0 78 22 39 cSH 780 1700 1700 534 1700 1700 80 83 Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42 Queue Length 95th (ft) 2 0 0 2 0 0 1467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 96.4 755.4 Lane LOS A B B F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F F Intersection Summary Average Delay 64.2 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Volume Total | 22 | 844 | 444 | 17 | 519 | 337 | 44 | 200 | | | | | | CSH 780 1700 1700 534 1700 1700 80 83 Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42 Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4 Lane LOS A B F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Volume Left | 22 | 0 | 0 | 17 | 0 | 0 | 22 | 156 | | | | | | Volume to Capacity 0.03 0.50 0.26 0.03 0.31 0.20 0.56 2.42 Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4 Lane LOS A B F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Volume Right | 0 | 0 | 22 | 0 | 0 | 78 | 22 | 39 | | | | | | Queue Length 95th (ft) 2 0 0 2 0 0 61 467 Control Delay (s) 9.7 0.0 0.0 12.0 0.0 96.4 755.4 Lane LOS A B F F Approach Delay (s) 0.2 96.4 755.4 Approach LOS F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | cSH | 780 | 1700 | 1700 | 534 | 1700 | 1700 | 80 | 83 | | | | | | Control Delay (s) 9.7 0.0 0.0 12.0 0.0 0.0 96.4 755.4 Lane LOS A B F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Volume to Capacity | 0.03 | 0.50 | 0.26 | 0.03 | 0.31 | 0.20 | 0.56 | 2.42 | | | | | | Lane LOS A B F F Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F Intersection Summary A A Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Queue Length 95th (ft) | 2 | 0 | 0 | 2 | 0 | 0 | 61 | 467 | | | | | | Approach Delay (s) 0.2 0.2 96.4 755.4 Approach LOS F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Control Delay (s) | 9.7 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 96.4 | 755.4 | | | | | | Approach LOS F F Intersection Summary Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Lane LOS | Α | | | В | | | F | F | | | | | | Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Approach Delay (s) | 0.2 | | | 0.2 | | | 96.4 | 755.4 | | | | | | Average Delay 64.2 Intersection Capacity Utilization 52.7% ICU Level of Service A | Approach LOS | | | | | | | F | F | | | | | | Intersection Capacity Utilization 52.7% ICU Level of Service A | Intersection Summary | | | | | | | | | | | | | | | Average Delay | | | 64.2 | | | | | | | | | | | Analysis Period (min) 15 | Intersection Capacity Ut | ilization | | 52.7% | I | CU Lev | el of Sei | rvice | | Α | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 7 HCM Unsignalized Intersection Capacity Analysis 8: Main Street & Laurel Mountain Road Saturday Peak - Alternative 5 10/12/2010 | | - | • | • | - | 4 | / | | | | |--------------------------|-------------|------|-------|----------|--------|---------------|---|---|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | | Lane Configurations | † î> | | ች | ^ | ¥ | | | | | | Sign Control | Free | | | Free | Stop | | | | | | Grade | 0% | | | 0% | 0% | | | | | | Volume (veh/h) | 1000 | 0 | 165 | 20 | 95 | 30 | | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Hourly flow rate (vph) | 1111 | 0 | 183 | 22 | 106 | 33 | | | | | Pedestrians | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | Percent Blockage | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | Median type | | | | | None | | | | | | Median storage veh) | | | | | | | | | | | Upstream signal (ft) | | | | 505 | | | | | | | pX, platoon unblocked | | | | | | | | | | | vC, conflicting volume | | | 1111 | | 1489 | 556 | | | | | vC1, stage 1 conf vol | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | vCu, unblocked vol | | | 1111 | | 1489 | 556 | | | | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | | | | tC, 2 stage (s) | | | | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | | | | p0 queue free % | | | 71 | | 0 | 93 | | | | | cM capacity (veh/h) | | | 624 | | 81 | 475 | | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | WB 3 | NB 1 | | | | | Volume Total | 741 | 370 | 183 | 11 | 11 | 139 | | | | | Volume Left | 0 | 0 | 183 | 0 | 0 | 106 | | | | | Volume Right | 0 | 0 | 0 | 0 | 0 | 33 | | | | | cSH | 1700 | 1700 | 624 | 1700 | 1700 | 101 | | | | | Volume to Capacity | 0.44 | 0.22 | 0.29 | 0.01 | 0.01 | 1.37 | | | | | Queue Length 95th (ft) | 0 | 0 | 31 | 0 | 0 | 249 | | | | | Control Delay (s) | 0.0 | 0.0 | 13.1 | 0.0 | 0.0 | 294.9 | | | | | Lane LOS | | | В | | | F | | | | | Approach Delay (s) | 0.0 | | 11.7 | | | 294.9 | | | | | Approach LOS | | | | | | F | | | | | Intersection Summary | | | | | | | | | | | Average Delay | | | 29.8 | | | | | | | | Intersection Capacity Ut | ilization | | 53.9% | - 1 | CU Lev | el of Service |) | Α | | | Analysis Period (min) | | | 15 | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis 9: Main Street & Old Mammoth Road Saturday Peak - Alternative 5 10/12/2010 | Movement | | - | • | • | • | 1 | ~ | |
---|---|------------|------|-------|----------|--------|----------------|--| | Ideal Flow (vphpl) | Movement | | | | WBT | | NBR | | | Total Lost time (s) | Lane Configurations | ^ | 7 | 7 | ^ | ٦ | 7 | | | Lane Util. Factor | | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Frt 1.00 0.85 1.00 1.00 0.085 1.00 0.95 1.00 0.85 Flt Protected 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 3539 1583 1770 3539 1770 1583 Flt Permitted 1.00 1.00 0.97 1.00 0.95 1.00 Satd. Flow (perm) 3539 1583 690 3539 1770 1583 Volume (vph) 385 515 90 285 285 70 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 428 572 100 317 317 78 RTOR Reduction (vph) 428 175 100 317 317 71 Turn Type Perm pm+pt Perm Perm Pm+pt Perm Protected Phases 2 1 6 3 3 Actuated Green, | | | | | | | | | | Fit Protected | Lane Util. Factor | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | Satd. Flow (prot) 3539 1583 1770 3539 1770 1583 Flt Permitted 1.00 1.00 0.37 1.00 0.95 1.00 Satd. Flow (perm) 3539 1583 690 3539 1770 1583 Volume (vph) 385 515 90 285 285 70 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 428 572 100 317 317 78 RTOR Reduction (vph) 0 397 0 0 0 47 Lane Group Flow (vph) 428 175 100 317 317 78 Turn Type Perm perm ph-pt Perm Perm Perm Permitted Phases 2 6 3 2 6 3 Actuated Green, G (s) 16.6 16.6 25.2 25.2 22.4 22.4 2 4 6 3 <td< td=""><td>Frt</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | Frt | | | | | | | | | Fit Permitted | | | 1.00 | 0.95 | | 0.95 | | | | Satd. Flow (perm) 3539 1583 690 3539 1770 1583 | Satd. Flow (prot) | | | 1770 | 3539 | 1770 | 1583 | | | Volume (vph) 385 515 90 285 285 70 Peak-hour factor, PHF 0.90 0.80 2 6 2 2 6 3 3 4 4 1 6 3 4 4 1 6 3 3 4 4 1 1 6 3 3 3 0 | Flt Permitted | 1.00 | 1.00 | 0.37 | | 0.95 | | | | Peak-hour factor, PHF | Satd. Flow (perm) | 3539 | 1583 | | 3539 | 1770 | | | | Adj. Flow (vph) 428 572 100 317 317 78 RTOR Reduction (vph) 0 397 0 0 0 47 Lane Group Flow (vph) 428 175 100 317 317 31 Turn Type Perm pm+pt Perm Perm Perm Perm Protected Phases 2 1 6 3 Actuated Green, G (s) 16.6 16.6 25.2 25.2 22.4 22.4 Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 | Volume (vph) | 385 | 515 | 90 | 285 | 285 | 70 | | | RTOR Reduction (vph) | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Lane Group Flow (vph) 428 175 100 317 317 31 Turn Type Perm pm+pt Perm Protected Phases 2 1 6 3 Permitted Phases 2 6 3 3 Actuated Green, G (s) 16.6 16.6 25.2 25.2 22.4 22.4 Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 Actuated green, G (see, | Adj. Flow (vph) | 428 | 572 | 100 | 317 | 317 | 78 | | | Turn Type | RTOR Reduction (vph) | 0 | 397 | 0 | 0 | 0 | 47 | | | Protected Phases 2 1 6 3 Permitted Phases 2 6 3 Actuated Green, G (s) 16.6 16.6 25.2 22.4 22.4 Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 | Lane Group Flow (vph) | 428 | 175 | 100 | 317 | 317 | 31 | | | Permitted Phases | Turn Type | | Perm | pm+pt | | | Perm | | | Actuated Green, G (s) 16.6 16.6 25.2 25.2 22.4 22.4 Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 2.5 5.2 5.2 5.2 Lane Grp Cap (vph) 1085 485 402 1618 713 638 v/s Ratio Prot co.12 co.02 0.09 co.18 v/s Ratio Prot co.12 co.02 0.09 co.18 v/s Ratio Prom 0.11 0.09 0.02 v/c Ratio Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 2.0 0.1 Delay (s) 16.2 16.5 9.5 9.4 14.4 10.5 Level of Service B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B B B B A B B B B B A B | Protected Phases | 2 | | 1 | 6 | 3 | | | | Effective Green, g (s) 17.5 17.5 26.1 26.1 23.0 23.0 Actuated g/C Ratio 0.31 0.31 0.46 0.46 0.40 0.40 0.40 Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 5.2 5.2 5.2 5.2 Lane Grp Cap (vph) 1085 485 402 1618 713 638 v/s Ratio Prot c0.12 c0.02 0.09 c0.18 v/s Ratio Prot 0.11 0.09 0.02 v/c Ratio 0.39 0.36 0.25 0.20 0.44 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 lncremental Delay, d2 0.5 1.0 0.2 0.1 2.0 0.1 Delay (s) 16.2 16.5 9.5 9.4 14.4 10.5 Level of Service B B A A B B A A B B A A B B A A B B A B A B B A B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B | Permitted Phases | | 2 | 6 | | | 3 | | | Actuated g/C Ratio | Actuated Green, G (s) | 16.6 | 16.6 | 25.2 | 25.2 | 22.4 | 22.4 | | | Clearance Time (s) 4.9 4.9 4.1 4.9 4.6 4.6 Vehicle Extension (s) 5.2 5.2 5.2 2.5 5.2 5.2 5.2 5.2 Lane Grp Cap (vph) 1085 485 402 1618 713 638 V/S Ratio Prot c0.12 c0.02 0.09 c0.18 V/S Ratio Perm 0.11 0.09 0.02 V/C Ratio 0.39 0.36 0.25 0.20 0.44 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 2.0 0.1 Delay (s) 16.2 16.5 9.5 9.4 14.4 10.5 Level of Service B B A B B A B Approach LOS B A B | Effective Green, g (s) | 17.5 | 17.5 | 26.1 | 26.1 | 23.0 | 23.0 | | | Vehicle Extension (s) 5.2 | Actuated g/C Ratio | 0.31 | 0.31 | 0.46 | 0.46 | 0.40 | 0.40 | | | Lane Grp Cap (vph) 1085 485 402 1618 713 638 v/s Ratio Prot c0.12 c0.02 0.09 c0.18 v/s Ratio Prot c0.12 c0.02 0.09 c0.18 v/s Ratio Prot c0.11 0.09 0.02 v/s Ratio Define control Capacity Vis Ratio Prot co.11 0.09 0.02 v/s Ratio 0.39 0.36 0.25 0.20 0.44 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 2.0 0.1 Delay (s) 16.2 16.5 9.5 9.4 14.4 10.5 Level of Service B B A A B B A A B B A A B B B A B A B | Clearance Time (s) | 4.9 | 4.9 | 4.1 | 4.9 | 4.6 | 4.6 | | | v/s Ratio Prot c0.12 c0.02 0.09 c0.18 v/s Ratio Perm 0.11 0.09 0.02 0.02 v/c Ratio Perm 0.39 0.36 0.25 0.20 0.44 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 2.0 0.1 Delay (s) 16.2 16.5 9.5 9.4 14.4 10.5 Level of Service B B A A B B Approach LOS B A B B A B Intersection Summary HCM Average Control Delay 14.2 HCM Level of Service HCM Volume to Capacity ratio 0.41 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service | Vehicle Extension (s) | 5.2 | 5.2 | 2.5 | 5.2 | 5.2 | 5.2 | | | v/s Ratio Perm 0.11 0.09 0.02 v/c Ratio 0.39 0.36 0.25 0.20 0.44 0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 2.0 0.1 Delay (s) 16.2 16.5 9.5 9.4 14.4 10.5 Level of Service B B A A B B Approach LOS B B A B B A B Intersection Summary HCM Average Control Delay 14.2 HCM Level of Service HCM Volume to Capacity ratio 0.41 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service | Lane Grp Cap (vph) | 1085 | 485 | 402 | 1618 | 713 | 638 | | | v/c Ratio 0.39 0.36 0.25 0.20 0.44
0.05 Uniform Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 < | v/s Ratio Prot | c0.12 | | c0.02 | 0.09 | c0.18 | | | | Uniform Delay, d1 15.6 15.4 9.2 9.2 12.4 10.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 1.0 0.2 0.1 2.0 0.1 Delay (s) 16.2 16.5 9.5 9.4 14.4 10.5 Level of Service B B A A B B A A B B A A B B B A B A B | v/s Ratio Perm | | 0.11 | 0.09 | | | 0.02 | | | Progression Factor 1.00 <td>v/c Ratio</td> <td>0.39</td> <td>0.36</td> <td>0.25</td> <td>0.20</td> <td>0.44</td> <td>0.05</td> <td></td> | v/c Ratio | 0.39 | 0.36 | 0.25 | 0.20 | 0.44 | 0.05 | | | Incremental Delay, d2 | Uniform Delay, d1 | 15.6 | 15.4 | | 9.2 | 12.4 | | | | Delay (s) | Progression Factor | 1.00 | 1.00 | | 1.00 | | 1.00 | | | Level of Service B B A A B B Approach Delay (s) 16.3 9.4 13.6 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.2 HCM Level of Service HCM Volume to Capacity ratio 0.41 Actuated Cycle Length (s) Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service Analysis Period (min) 15 | Incremental Delay, d2 | | | | 0.1 | 2.0 | 0.1 | | | Approach Delay (s) 16.3 9.4 13.6 Approach LOS B A B Intersection Summary HCM Average Control Delay 14.2 HCM Level of Service HCM Volume to Capacity ratio 0.41 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service Analysis Period (min) 15 | Delay (s) | 16.2 | 16.5 | 9.5 | 9.4 | 14.4 | 10.5 | | | Approach LOS B A B Intersection Summary HCM Average Control Delay 14.2 HCM Level of Service HCM Volume to Capacity ratio 0.41 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service Analysis Period (min) 15 | Level of Service | В | В | Α | Α | В | В | | | Intersection Summary HCM Average Control Delay HCM Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) 14.2 HCM Level of Service HCM Level of Service HCM Level of Service ICU Level of Service | Approach Delay (s) | 16.3 | | | 9.4 | 13.6 | | | | HCM Average Control Delay 14.2 HCM Level of Service HCM Volume to Capacity ratio 0.41 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service Analysis Period (min) 15 | Approach LOS | В | | | Α | В | | | | HCM Volume to Capacity ratio 0.41 Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service Analysis Period (min) 15 | | | | | | | | | | Actuated Cycle Length (s) 57.1 Sum of lost time (s) Intersection Capacity Utilization 43.6% ICU Level of Service Analysis Period (min) 15 | | | | | H | ICM Le | vel of Service | | | Intersection Capacity Utilization 43.6% ICU Level of Service Analysis Period (min) 15 | | | | | | | | | | Analysis Period (min) 15 | | | | | | | | | | | | tilization | | | 10 | CU Lev | el of Service | | | c Critical Lane Group | | | | 15 | | | | | | | Critical Lane Group | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 9 HCM Unsignalized Intersection Capacity Analysis 10: Main Street & Sierra Park Boulevard Saturday Peak - Alternative 5 10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | <i>></i> | - | ļ | 4 | |--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|-------------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | , J | † } | | ٦ | ↑ ↑ | | | 4 | | | 4 | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 10 | 375 | 85 | 40 | 310 | 10 | 40 | 10 | 50 | 10 | 10 | 15 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 11 | 417 | 94 | 44 | 344 | 11 | 44 | 11 | 56 | 11 | 11 | 17 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | 544 | | | | | | | | | | | | pX, platoon unblocked | | | | 0.94 | | | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | | vC, conflicting volume | 356 | | | 511 | | | 769 | 931 | 256 | 731 | 972 | 178 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 356 | | | 422 | | | 696 | 866 | 151 | 654 | 911 | 178 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.5 | 6.5 | 6.9 | 7.5 | 6.5 | 6.9 | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | | p0 queue free % | 99 | | | 96 | | | 84 | 96 | 93 | 96 | 95 | 98 | | cM capacity (veh/h) | 1200 | | | 1070 | | | 282 | 259 | 819 | 288 | 244 | 835 | | Direction, Lane # | EB 1 | EB 2 | EB 3 | WB 1 | WB 2 | WB 3 | NB 1 | SB 1 | | | | | | Volume Total | 11 | 278 | 233 | 44 | 230 | 126 | 111 | 39 | | | | | | Volume Left | 11 | 0 | 0 | 44 | 0 | 0 | 44 | 11 | | | | | | Volume Right | 0 | 0 | 94 | 0 | 0 | 11 | 56 | 17 | | | | | | cSH | 1200 | 1700 | 1700 | 1070 | 1700 | 1700 | 414 | 374 | | | | | | Volume to Capacity | 0.01 | 0.16 | 0.14 | 0.04 | 0.14 | 0.07 | 0.27 | 0.10 | | | | | | Queue Length 95th (ft) | 1 | 0 | 0 | 3 | 0 | 0 | 27 | 9 | | | | | | Control Delay (s) | 8.0 | 0.0 | 0.0 | 8.5 | 0.0 | 0.0 | 16.9 | 15.7 | | | | | | Lane LOS | Α | | | Α | | | С | С | | | | | | Approach Delay (s) | 0.2 | | | 0.9 | | | 16.9 | 15.7 | | | | | | Approach LOS | | | | | | | С | С | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 2.8 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 35.3% | - 1 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 11: Tavern Road & Old Mammoth Road Saturday Peak - Alternative 5 | Lane Configurations | | • | - | • | • | • | • | 4 | † | - | - | ↓ | 4 | |--|------------------------|-----------|------|-------|------|--------|-----------|------|----------|------|------|----------|------| | Sign Control Stop Stop Pree Grade O% O% O% O% O% O% O% O | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Grade | Lane Configurations | | 4 | | | 4 | | ሻ | - 1→ | | ሻ | f) | | | Volume (veh/h) | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Peak Hour Factor | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Hourly flow rate (vph) 22 6 44 6 6 17 56 444 6 11 789 44 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) 760 pX, platoon unblocked vC,
conflicting volume 1408 1394 811 1417 1414 447 833 450 vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 sonf vol vC3, stage 2 sonf vol vC4, unblocked vol 1408 1394 811 1417 1414 447 833 450 tC5, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC7, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 common co | Volume (veh/h) | 20 | 5 | 40 | 5 | 5 | 15 | 50 | 400 | 5 | 10 | 710 | 40 | | Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Non | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage 1 conf vol vC4, stage 1 conf vol vC5, stage 5, vC6, stage 6, vC7, stage 1 conf vol vC9, stage 2 conf vol vC9, stage 2 conf vol vC9, stage 2 conf vol vC9, stage 1 conf vol vC9, stage 2 vC1, stage 1 vC2, stage (s) stage 2 conf vol vC1, stage 1 conf vol vC2, stage (s) stage 2 conf vol vC1, stage 1 conf vol vC2, stage (s) stage 2 conf vol vC2, stage (s) stage 2 conf vol vC1, stage 1 conf vol vC2, stage (s) stage 2 vC1, stage 1 conf vol vC1, stage 1 conf vol stage 2 conf vol vC1, stage 1 conf vol vC1, stage 2 | Hourly flow rate (vph) | 22 | 6 | 44 | 6 | 6 | 17 | 56 | 444 | 6 | 11 | 789 | 44 | | Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) Dystream signal (ft) Oyc., polificting volume VC1, stage 1 conf vol VC2, stage 2 conf vol VC4, unblocked vol LC, stage 8) VC1, stage 1 conf vol VC2, stage 8) VC3, stage 9 conf vol VC4, unblocked vol LC, 2 stage 8) VC4, unblocked vol LC, 2 stage 8) VC5, stage 9 VC6, stage 9 VC7, stage 1 conf vol VC9, unblocked vol LC, 2 stage 1 conf vol VC9, unblocked vol LC, 2 stage (s) VC9, stage 1 conf vol VC9, unblocked vol LC, 2 stage (s) VC9, stage 1 conf vol VC9, stage 1 conf vol VC9, unblocked vol LC, 2 stage (s) VC9, stage 1 conf vol VC9, unblocked vol LC, 2 stage (s) VC9, stage 1 conf vol VC9, stage 1 conf vol VC9, stage 2 conf vol VC9, stage 2 conf vol VC9, stage 2 conf vol VC9, stage 1 conf vol VC9, stage 1 conf vol VC9, stage 2 conf vol VC9, stage 2 conf vol VC9, stage 2 conf vol VC9, stage 1 conf vol VC9, stage 2 VC1, stage 4 stage 3 stage 4 sta | Pedestrians | | | | | | | | | | | | | | Percent Blockage Right turn flare (veh) None None Median type None None Median storage veh) Upstream signal (ft) 760 pX, platoon unblocked voc, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1408 1394 811 1417 1414 447 833 450 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) 1f (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 cM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB | Lane Width (ft) | | | | | | | | | | | | | | Right turn flare (veh) Median type None N | Walking Speed (ft/s) | | | | | | | | | | | | | | Median type None None Median storage veh) Tool Upstream signal (ft) 760 pX, platoon unblocked vC, conflicting volume 1408 1394 811 1417 1414 447 833 450 vC1, stage 1 conf vol vCQ, stage 2 conf vol vCQ, unblocked vol 1408 1394 811 1417 1414 447 833 450 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 cM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Right 44 17 | Percent Blockage | | | | | | | | | | | | | | Median storage veh) Upstream signal (ft) Upstream signal (ft) VC, ponflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 8) T, 1 6,5 6,2 7,1 6,5 6,2 4,1 4,1 T, 2 stage (s) T, 2 stage (s) T, 3,5 4,0 3,3 3,5 4,0 3,3 2,2 2,2 T, 1 6,5 6,2 4,1 4,1 T, 3,5 4,0 3,3 3,5 4,0 3,3 2,2 2,2 T, 1 6,5 6,2 4,1 4,1 T, 1 4,1 T, 1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 | Right turn flare (veh) | | | | | | | | | | | | | | Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 8 conf vol vC3, stage 1 conf vol vC4, stage 1 conf vol vC5, stage 2 conf vol vC6, stage 8 conf vol vC7, stage 9 conf vol vC8, stage 1 conf vol vC9, stage 9 vC1, stage 9 conf vol vC9, stage 9 conf vol vC1, stage 1 conf vol vC1, stage 1 conf vol vC9, stage 9 conf vol vC1, stage 1 con vC1, stage 2 con vol vC2, stage 2 con vol vC1, stage 2 con vol vC1, stage 2 con vol vC1, stage 3 con vol vC1, stage 2 con vol vC1, stage 4 con vol vC1, stage 2 vC2, stage 2 con vol vC1, stage | Median type | | None | | | None | | | | | | | | | pX, platoon unblocked vC, conflicting volume vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol 1408 1394 811 1417 1414 447 833 450 C5, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (c) C2, stage (s) T5 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (c) C2, stage (s) T6 78 96 88 94 96 97 93 99 C7 | Median storage veh) | | | | | | | | | | | | | | VC, conflicting volume 1408 1394 811 1417 1414 447 833 450 VC1, stage 1 conf vol vC1, stage 2 conf vol vCQ, stage 2 conf vol vCQ, unblocked vol 1408 1394 811 1417 1414 447 833 450 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (C, 2 stage (s) TC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (C, 2 stage (s) TC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (C, 2 stage (s) TC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (C, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 7.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage (s) TC, single (s) 7.1 6.5 6.2 4.1 (d, 2 stage 6.1 (d, 2 stage (s) 7.1 6.1 (| Upstream signal (ft) | | | | | | | | | | | 760 | | | vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 1408 1394 811 1417 1414 447 833 450
IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1
IC, 2 stage (s)
IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2
p0 queue free % 78 96 88 94 96 97 93 99
cM capacity (veh/h) 103 130 379 92 127 611 800 1110
Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2
Volume Total 72 28 56 450 11 833
Volume Left 22 6 56 0 11 0
Volume Right 44 17 0 6 0 44
cSH 192 211 800 1700 1110 1700
Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49
Queue Length 95th (ft) 41 11 6 0 1 0
Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0
Lane LOS D C A A
Approach Delay (s) 34.6 24.6 1.1 0.1
Approach LOS D C
Intersection Summary Average Delay 2.6
Intersection Capacity Utilization 54.3% ICU Level of Service A | pX, platoon unblocked | | | | | | | | | | | | | | VCQ, stage 2 conf vol VCQ, unblocked vol 1408 1394 811 1417 1414 447 833 450 tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 cM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 CSH 192 211 800 1700 1110 1700 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | vC, conflicting volume | 1408 | 1394 | 811 | 1417 | 1414 | 447 | 833 | | | 450 | | | | vCu, unblocked vol 1408 1394 811 1417 1414 447 833 450 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 ICC, 2 stage (s) ItF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 CM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 CSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | vC1, stage 1 conf vol | | | | | | | | | | | | | | tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1 (C, 2 stage (s)) tC, 2 stage (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 cM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A |
vC2, stage 2 conf vol | | | | | | | | | | | | | | IC, 2 stage (s) IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 cM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach Delay (s) 34.6 24.6 1.1 0.1 Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | vCu, unblocked vol | | 1394 | | | 1414 | | | | | | | | | tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 78 96 88 94 96 97 93 99 cM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | p0 queue free % 78 96 88 94 96 97 93 99 cM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | tC, 2 stage (s) | | | | | | | | | | | | | | CM capacity (veh/h) 103 130 379 92 127 611 800 1110 Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | tF (s) | | | | | | | | | | | | | | Direction, Lane # | p0 queue free % | | | | | | | | | | | | | | Volume Total 72 28 56 450 11 833 Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | cM capacity (veh/h) | 103 | 130 | 379 | 92 | 127 | 611 | 800 | | | 1110 | | | | Volume Left 22 6 56 0 11 0 Volume Right 44 17 0 6 0 44 cSH 192 211 800 1700 1110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Right 44 17 0 6 6 0 44 cSH 192 211 800 1700 11110 1700 Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Volume Total | 72 | 28 | 56 | 450 | 11 | 833 | | | | | | | | 192 211 800 1700 1110 1700 | Volume Left | 22 | 6 | 56 | 0 | 11 | 0 | | | | | | | | Volume to Capacity 0.38 0.13 0.07 0.26 0.01 0.49 Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Volume Right | 44 | 17 | 0 | 6 | 0 | 44 | | | | | | | | Queue Length 95th (ft) 41 11 6 0 1 0 Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | cSH | 192 | 211 | 800 | 1700 | 1110 | 1700 | | | | | | | | Control Delay (s) 34.6 24.6 9.8 0.0 8.3 0.0 Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Volume to Capacity | 0.38 | 0.13 | 0.07 | 0.26 | 0.01 | 0.49 | | | | | | | | Lane LOS D C A A Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Queue Length 95th (ft) | 41 | 11 | 6 | 0 | 1 | 0 | | | | | | | | Approach Delay (s) 34.6 24.6 1.1 0.1 Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Control Delay (s) | 34.6 | 24.6 | 9.8 | 0.0 | 8.3 | 0.0 | | | | | | | | Approach LOS D C Intersection Summary Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Lane LOS | D | С | Α | | Α | | | | | | | | | Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Approach Delay (s) | 34.6 | 24.6 | 1.1 | | 0.1 | | | | | | | | | Average Delay 2.6 Intersection Capacity Utilization 54.3% ICU Level of Service A | Approach LOS | D | С | | | | | | | | | | | | Intersection Capacity Utilization 54.3% ICU Level of Service A | Intersection Summary | | | | | | | | | | | | | | Intersection Capacity Utilization 54.3% ICU Level of Service A | Average Delay | | | 2.6 | | | | | | | | | | | Analysis Period (min) 15 | | ilization | 1 | 54.3% | 10 | CU Lev | el of Ser | vice | | Α | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 11 HCM Unsignalized Intersection Capacity Analysis 12: Sierra Nevada Road & Old Mammoth Road Saturday Peak - Alternative 5 10/12/2010 | | ၨ | - | • | • | ← | • | 4 | † | / | > | ţ | 1 | |--------------------------|------------|------|-------|------|----------|-----------|------|----------|----------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ሻ | ₽ | | ٦ | 4î | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 20 | 15 | 85 | 20 | 20 | 35 | 75 | 430 | 5 | 45 | 660 | 45 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 22 | 17 | 94 | 22 | 22 | 39 | 83 | 478 | 6 | 50 | 733 | 50 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | 773 | | | | | | pX, platoon unblocked | 0.98 | 0.98 | | 0.98 | 0.98 | 0.98 | | | | 0.98 | | | | vC, conflicting volume | 1553 | 1508 | 758 | 1583 | 1531 | 481 | 783 | | | 483 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1566 | 1521 | 758 | 1598 | 1544 | 468 | 783 | | | 471 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 63 | 83 | 77 | 56 | 77 | 93 | 90 | | | 95 | | | | cM capacity (veh/h) | 60 | 99 | 407 | 50 | 96 | 581 | 835 | | | 1065 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 133 | 83 | 83 | 483 | 50 | 783 | | | | | | | | Volume Left | 22 | 22 | 83 | 0 | 50 | 0 | | | | | | | | Volume Right | 94 | 39 | 0 | 6 | 0 | 50 | | | | | | | | cSH | 174 | 112 | 835 | 1700 | 1065 | 1700 | | | | | | | | Volume to Capacity | 0.77 | 0.74 | 0.10 | 0.28 | 0.05 | 0.46 | | | | | | | | Queue Length 95th (ft) | 125 | 102 | 8 | 0 | 4 | 0 | | | | | | | | Control Delay (s) | 73.0 | 97.7 | 9.8 | 0.0 | 8.5 | 0.0 | | | | | | | | Lane LOS | F | F | Α | | Α | | | | | | | | | Approach Delay (s) | 73.0 | 97.7 | 1.4 | | 0.5 | | | | | | | | | Approach LOS | F | F | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 11.8 | | | | | | | | | | | Intersection Capacity Ut | tilization | 1 | 60.0% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis 13: Meridian Boulevard & Majestic Pines Drive **≠ - ← ← ← √** Saturday Peak - Alternative 5 10/12/2010 | | | - | - | _ | * | * | | | |--------------------------|-----------|------|------------|------|---------|---------------|---|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | | 41₽ | ↑ ↑ | | ¥ | | | | | Sign Control | | Free | Free | | Stop | | | | | Grade | | 0% | 0% | | 0% | | | | | Volume (veh/h) | 60 | 425 | 210 | 70 | 50 | 40 | | | |
Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Hourly flow rate (vph) | 67 | 472 | 233 | 78 | 56 | 44 | | | | Pedestrians | | | | | | | | | | Lane Width (ft) | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | Percent Blockage | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | Median type | | | | | None | | | | | Median storage veh) | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | vC, conflicting volume | 311 | | | | 642 | 156 | | | | vC1, stage 1 conf vol | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | vCu, unblocked vol | 311 | | | | 642 | 156 | | | | tC, single (s) | 4.1 | | | | 6.8 | 6.9 | | | | tC, 2 stage (s) | | | | | | | | | | tF (s) | 2.2 | | | | 3.5 | 3.3 | | | | p0 queue free % | 95 | | | | 86 | 95 | | | | cM capacity (veh/h) | 1246 | | | | 385 | 862 | | | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | SB 1 | | | | | Volume Total | 224 | 315 | 156 | 156 | 100 | | | | | Volume Left | 67 | 0 | 0 | 0 | 56 | | | | | Volume Right | 0 | 0 | 0 | 78 | 44 | | | | | cSH | 1246 | 1700 | 1700 | 1700 | 511 | | | | | Volume to Capacity | 0.05 | 0.19 | 0.09 | 0.09 | 0.20 | | | | | Queue Length 95th (ft) | 4 | 0 | 0.00 | 0.00 | 18 | | | | | Control Delay (s) | 2.7 | 0.0 | 0.0 | 0.0 | 13.8 | | | | | Lane LOS | Α | 0.0 | 0.0 | 0.0 | В | | | | | Approach Delay (s) | 1.1 | | 0.0 | | 13.8 | | | | | Approach LOS | | | | | В | | | | | Intersection Summary | | | | | | | | | | Average Delay | | | 2.1 | | | | | | | Intersection Capacity Ut | ilization | | 36.8% | 10 | CU Leve | el of Service | Α | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 13 HCM Signalized Intersection Capacity Analysis 14: Meridian Boulevard & Minaret Road Saturday Peak - Alternative 5 10/12/2010 | | ۶ | - | • | • | ← | • | 1 | † | ~ | / | ţ | 4 | |-------------------------|------------|------------|-------|-------|-------------|-----------|--------|------|------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | ሻ | ∱ î≽ | | ሻ | 1> | | ሻ | ٦ | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.97 | | 1.00 | 0.94 | | 1.00 | 0.98 | | 1.00 | 0.97 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1770 | 3417 | | 1770 | 3313 | | 1770 | 1828 | | 1770 | 1816 | | | Flt Permitted | 0.34 | 1.00 | | 0.47 | 1.00 | | 0.37 | 1.00 | | 0.44 | 1.00 | | | Satd. Flow (perm) | 635 | 3417 | | 881 | 3313 | | 688 | 1828 | | 816 | 1816 | | | Volume (vph) | 140 | 320 | 95 | 30 | 195 | 145 | 50 | 180 | 25 | 315 | 420 | 85 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 156 | 356 | 106 | 33 | 217 | 161 | 56 | 200 | 28 | 350 | 467 | 94 | | RTOR Reduction (vph) | 0 | 29 | 0 | 0 | 126 | 0 | 0 | 6 | 0 | 0 | 8 | 0 | | Lane Group Flow (vph) | 156 | 433 | 0 | 33 | 252 | 0 | 56 | 222 | 0 | 350 | 553 | 0 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | | pm+pt | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 25.4 | 19.5 | | 17.4 | 15.5 | | 24.4 | 21.3 | | 39.2 | 32.0 | | | Effective Green, g (s) | 26.4 | 20.4 | | 18.4 | 16.4 | | 25.4 | 22.2 | | 40.1 | 32.9 | | | Actuated g/C Ratio | 0.35 | 0.27 | | 0.25 | 0.22 | | 0.34 | 0.30 | | 0.54 | 0.44 | | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | | | Vehicle Extension (s) | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | 2.5 | 5.0 | | | Lane Grp Cap (vph) | 316 | 936 | | 241 | 729 | | 281 | 545 | | 617 | 802 | | | v/s Ratio Prot | c0.04 | 0.13 | | 0.00 | 0.08 | | 0.01 | 0.12 | | c0.11 | c0.30 | | | v/s Ratio Perm | c0.14 | | | 0.03 | | | 0.06 | | | 0.20 | | | | v/c Ratio | 0.49 | 0.46 | | 0.14 | 0.35 | | 0.20 | 0.41 | | 0.57 | 0.69 | | | Uniform Delay, d1 | 17.4 | 22.5 | | 21.5 | 24.5 | | 16.8 | 20.9 | | 10.5 | 16.7 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.9 | 0.8 | | 0.2 | 0.6 | | 0.3 | 1.0 | | 1.0 | 3.2 | | | Delay (s) | 18.3 | 23.3 | | 21.7 | 25.1 | | 17.1 | 21.9 | | 11.4 | 19.9 | | | Level of Service | В | С | | С | С | | В | С | | В | В | | | Approach Delay (s) | | 22.0 | | | 24.9 | | | 21.0 | | | 16.6 | | | Approach LOS | | С | | | С | | | С | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 20.2 | H | ICM Le | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | ity ratio | | 0.61 | | | | | | | | | | | Actuated Cycle Length | (s) | | 74.5 | 5 | Sum of le | ost time | (s) | | 12.0 | | | | | Intersection Capacity U | tilization | | 63.4% | 10 | CU Leve | el of Ser | vice | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Signalized Intersection Capacity Analysis Page 14 HCM Signalized Intersection Capacity Analysis 15: Meridian Boulevard & Old Mammoth Road Saturday Peak - Alternative 5 10/12/2010 | | • | \rightarrow | • | • | • | • | 1 | Ť | ~ | - | ¥ | 4 | |---|------------|---------------|-------|-------|------------|-----------|--------|----------|------|-------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ľ | † î> | | J. | † } | | ľ | † | 7 | ٦ | ↑ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 0.98 | | 1.00 | 0.97 | | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1770 | 3458 | | 1770 | 3445 | | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | | Flt Permitted | 0.34 | 1.00 | | 0.17 | 1.00 | | 0.27 | 1.00 | 1.00 | 0.45 | 1.00 | 1.00 | | Satd. Flow (perm) | 632 | 3458 | | 315 | 3445 | | 511 | 1863 | 1583 | 839 | 1863 | 1583 | | Volume (vph) | 190 | 690 | 125 | 105 | 370 | 80 | 140 | 255 | 55 | 125 | 340 | 60 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 211 | 767 | 139 | 117 | 411 | 89 | 156 | 283 | 61 | 139 | 378 | 67 | | RTOR Reduction (vph) | 0 | 17 | 0 | 0 | 20 | 0 | 0 | 0 | 43 | 0 | 0 | 48 | | Lane Group Flow (vph) | 211 | 889 | 0 | 117 | 480 | 0 | 156 | 283 | 18 | 139 | 378 | 19 | | Turn Type | pm+pt | | | pm+pt | | | pm+pt | | Perm | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | 6 | | 3 | 8 | | 7 | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | 8 | 4 | | 4 | | Actuated Green, G (s) | 33.2 | 25.4 | | 28.2 | 22.9 | | 27.0 | 21.5 | 21.5 | 25.4 | 20.7 | 20.7 | | Effective Green, g (s) | 34.2 | 26.3 | | 29.2 | 23.8 | | 28.0 | 22.4 | 22.4 | 26.4 | 21.6 | 21.6 | | Actuated g/C Ratio | 0.46 | 0.35 | | 0.39 | 0.32 | | 0.37 | 0.30 | 0.30 | 0.35 | 0.29 | 0.29 | | Clearance Time (s) | 4.1 | 4.9 | | 4.1 | 4.9 | | 4.1 | 4.9 | 4.9 | 4.1 | 4.9 | 4.9 | | Vehicle Extension (s) | 2.5 | 3.7 | | 2.5 | 3.8 | | 2.5 | 3.8 | 3.8 | 2.5 | 3.8 | 3.8 | | Lane Grp Cap (vph) | 409 | 1214 | | 228 | 1095 | | 285 | 557 | 473 | 355 | 537 | 457 | | v/s Ratio Prot | c0.05 | c0.26 | | 0.04 | 0.14 | | c0.04 | 0.15 | | 0.03 | c0.20 | | | v/s Ratio Perm | 0.18 | | | 0.16 | | | 0.16 | | 0.01 | 0.11 | | 0.01 | | v/c Ratio | 0.52 | 0.73 | | 0.51 | 0.44 | | 0.55 | 0.51 | 0.04 | 0.39 | 0.70 | 0.04 | | Uniform Delay, d1 | 13.0 | 21.2 | | 15.9 | 20.3 | | 17.1 | 21.7 | 18.6 | 17.2 | 23.8 | 19.2 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 0.8 | 2.4 | | 1.5 | 0.4 | | 1.7 | 0.9 | 0.0 | 0.5 | 4.4 | 0.0 | | Delay (s) | 13.8 | 23.7 | | 17.4 | 20.6 | | 18.8 | 22.6 | 18.7 | 17.8 | 28.2 | 19.2 | | Level of Service | В | С | | В | С | | В | С | В | В | С | В | | Approach Delay (s) | | 21.8 | | | 20.0 | | | 20.9 | | | 24.7 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control [| Delay | | 21.9 | H | ICM Lev | vel of Se | ervice | | С | | | | | HCM Volume to Capaci | | | 0.71 | | | | | | | | | | | Actuated Cycle Length | | | 74.9 | 5 | Sum of lo | ost time | (s) | | 16.0 | | | | | Intersection Capacity U | tilization | | 67.9% | 10 | CU Leve | el of Sei | rvice | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Critical Lane Group | LSC, Inc. (BP) | |------------------------------| | Mammoth Lakes (LSC#084870) | | Wallinour Lakes (LSC#004670) | | LSC, Inc. | HCM Signalized Intersection Capacity Analysis Page 15 HCM Unsignalized Intersection Capacity Analysis 16: Meridian Boulevard & Sierra Park Road Saturday Peak - Alternative 5 ____10/12/2010 | | ۶ | - | • | • | ← | • | 4 | † | / | - | ↓ | 1 | |---------------------------|----------|-------|-------|-------|----------|-----------|------|----------|------|------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 413 | | | 414 | | | 4 | | | 4 | | | Sign Control | | Stop | | | Stop | | | Stop | | | Stop
 | | Volume (vph) | 45 | 145 | 5 | 5 | 140 | 15 | 25 | 5 | 5 | 15 | 5 | 75 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 50 | 161 | 6 | 6 | 156 | 17 | 28 | 6 | 6 | 17 | 6 | 83 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | | | | | | | | Volume Total (vph) | 131 | 86 | 83 | 94 | 39 | 106 | | | | | | | | Volume Left (vph) | 50 | 0 | 6 | 0 | 28 | 17 | | | | | | | | Volume Right (vph) | 0 | 6 | 0 | 17 | 6 | 83 | | | | | | | | Hadj (s) | 0.23 | -0.01 | 0.07 | -0.09 | 0.09 | -0.41 | | | | | | | | Departure Headway (s) | 5.2 | 5.0 | 5.1 | 5.0 | 5.0 | 4.5 | | | | | | | | Degree Utilization, x | 0.19 | 0.12 | 0.12 | 0.13 | 0.05 | 0.13 | | | | | | | | Capacity (veh/h) | 666 | 692 | 671 | 695 | 659 | 744 | | | | | | | | Control Delay (s) | 8.3 | 7.5 | 7.6 | 7.5 | 8.3 | 8.1 | | | | | | | | Approach Delay (s) | 8.0 | | 7.6 | | 8.3 | 8.1 | | | | | | | | Approach LOS | Α | | Α | | Α | Α | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Delay | | | 7.9 | | | | | | | | | | | HCM Level of Service | | | Α | | | | | | | | | | | Intersection Capacity Uti | lization | | 26.5% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 16 HCM Unsignalized Intersection Capacity Analysis 17: Chateau Road & Old Mammoth Road Saturday Peak - Alternative 5 10/12/2010 | | ۶ | → | \rightarrow | • | ← | • | 1 | † | / | - | ţ | 4 | |--------------------------|-----------|----------|---------------|------|----------|-----------|------|----------|----------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | | | 4 | | ٦ | ĵ» | | ሻ | 1> | | | Sign Control | | Stop | | | Stop | | | Free | | | Free | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 30 | 35 | 10 | 10 | 20 | 60 | 10 | 300 | 10 | 105 | 365 | 75 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Hourly flow rate (vph) | 33 | 39 | 11 | 11 | 22 | 67 | 11 | 333 | 11 | 117 | 406 | 83 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | | | | | | Median type | | None | | | None | | | | | | | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | 1037 | | | pX, platoon unblocked | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | 0.98 | | | | | | | vC, conflicting volume | 1114 | 1047 | 447 | 1031 | 1083 | 339 | 489 | | | 344 | | | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 1116 | 1048 | 435 | 1031 | 1085 | 339 | 478 | | | 344 | | | | tC, single (s) | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6.2 | 4.1 | | | 4.1 | | | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3.3 | 2.2 | | | 2.2 | | | | p0 queue free % | 76 | 80 | 98 | 93 | 88 | 91 | 99 | | | 90 | | | | cM capacity (veh/h) | 137 | 199 | 608 | 159 | 190 | 703 | 1061 | | | 1215 | | | | Direction, Lane # | EB 1 | WB 1 | NB 1 | NB 2 | SB 1 | SB 2 | | | | | | | | Volume Total | 83 | 100 | 11 | 344 | 117 | 489 | | | | | | | | Volume Left | 33 | 11 | 11 | 0 | 117 | 0 | | | | | | | | Volume Right | 11 | 67 | 0 | 11 | 0 | 83 | | | | | | | | cSH | 183 | 355 | 1061 | 1700 | 1215 | 1700 | | | | | | | | Volume to Capacity | 0.46 | 0.28 | 0.01 | 0.20 | 0.10 | 0.29 | | | | | | | | Queue Length 95th (ft) | 54 | 28 | 1 | 0 | 8 | 0 | | | | | | | | Control Delay (s) | 40.3 | 19.1 | 8.4 | 0.0 | 8.3 | 0.0 | | | | | | | | Lane LOS | Е | С | Α | | Α | | | | | | | | | Approach Delay (s) | 40.3 | 19.1 | 0.3 | | 1.6 | | | | | | | | | Approach LOS | Е | С | | | | | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 5.5 | | | | | | | | | | | Intersection Capacity Ut | ilization | 1 | 47.6% | 10 | CU Leve | el of Ser | vice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 17 HCM Unsignalized Intersection Capacity Analysis 18: Old Mammoth Road & Minaret Road Saturday Peak - Alternative 5 10/12/2010 | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |--------------------------|-----------|----------|-------|------|----------|----------|-------|----------|------|-------------|------|-----| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBF | | Lane Configurations | ሻ | ₽ | | ሻ | î, | | | ર્ન | 7 | Ť | ₽ | | | Sign Control | | Free | | | Free | | | Stop | | | Stop | | | Grade | | 0% | | | 0% | | | 0% | | | 0% | | | Volume (veh/h) | 105 | 170 | 40 | 125 | 195 | 90 | 20 | 65 | 85 | 100 | 145 | 19 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.9 | | Hourly flow rate (vph) | 117 | 189 | 44 | 139 | 217 | 100 | 22 | 72 | 94 | 111 | 161 | 21 | | Pedestrians | | | | | | | | | | | | | | Lane Width (ft) | | | | | | | | | | | | | | Walking Speed (ft/s) | | | | | | | | | | | | | | Percent Blockage | | | | | | | | | | | | | | Right turn flare (veh) | | | | | | | | | 2 | | | | | Median type | | | | | | | | None | | | None | | | Median storage veh) | | | | | | | | | | | | | | Upstream signal (ft) | | | | | | | | | | | | | | pX, platoon unblocked | | | | | | | | | | | | | | vC, conflicting volume | 317 | | | 233 | | | 1231 | 1039 | 211 | 1050 | 1011 | 26 | | vC1, stage 1 conf vol | | | | | | | | | | | | | | vC2, stage 2 conf vol | | | | | | | | | | | | | | vCu, unblocked vol | 317 | | | 233 | | | 1231 | 1039 | 211 | 1050 | 1011 | 26 | | tC, single (s) | 4.1 | | | 4.1 | | | 7.1 | 6.5 | 6.2 | 7.1 | 6.5 | 6. | | tC, 2 stage (s) | | | | | | | | | | | | | | tF (s) | 2.2 | | | 2.2 | | | 3.5 | 4.0 | 3.3 | 3.5 | 4.0 | 3. | | p0 queue free % | 91 | | | 90 | | | 27 | 61 | 89 | 0 | 17 | 7 | | cM capacity (veh/h) | 1243 | | | 1334 | | | 30 | 187 | 829 | 110 | 194 | 77 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | SB 1 | SB 2 | | | | | | | Volume Total | 117 | 233 | 139 | 317 | 189 | 111 | 372 | | | | | | | Volume Left | 117 | 0 | 139 | 0 | 22 | 111 | 0 | | | | | | | Volume Right | 0 | 44 | 0 | 100 | 94 | 0 | 211 | | | | | | | cSH | 1243 | 1700 | 1334 | 1700 | 251 | 110 | 338 | | | | | | | Volume to Capacity | 0.09 | 0.14 | 0.10 | 0.19 | 0.75 | 1.01 | 1.10 | | | | | | | Queue Length 95th (ft) | 8 | 0 | 9 | 0 | 134 | 163 | 354 | | | | | | | Control Delay (s) | 8.2 | 0.0 | 8.0 | 0.0 | 52.7 | 161.9 | 114.9 | | | | | | | Lane LOS | Α | | Α | | F | F | F | | | | | | | Approach Delay (s) | 2.7 | | 2.4 | | 52.7 | 125.7 | | | | | | | | Approach LOS | | | | | F | F | | | | | | | | Intersection Summary | | | | | | | | | | | | | | Average Delay | | | 49.3 | | | | | | | | | | | Intersection Capacity Ut | ilization | | 52.4% | 10 | CU Leve | el of Se | rvice | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | LSC, Inc. (BP) Mammoth Lakes (LSC#084870) LSC, Inc. HCM Unsignalized Intersection Capacity Analysis Page 18 ### Town of Mammoth Lakes Travel Demand Model Description of Model Design Volume Methodology The following is an excerpt from the General Plan Final Environmental Impact Report (FEIR) Volume II: Response to Comments (Responses 11-209, 11-210, and 11-212) that describes the travel model design volume development and the rationale for the use of the "typical winter Saturday" peak-hour conditions as a basis for analyzing traffic impacts and Level of Service (LOS) in the Town of Mammoth Lakes. ### Typical Winter Saturday Peak-Hour To avoid the development or expansion of facilities that are needed only a relatively few days per year, or hours per year, it is standard practice to use a design volume level that is slightly less than the absolute peak traffic volume. In order to accomplish this, the Town of Mammoth Lakes uses the concept of the "typical winter Saturday peak hour" as the basis for the design of facilities. While daily traffic volumes in Mammoth Lakes are sometimes the highest in the summer months, the highest peak-hour volumes are typically experienced on winter Saturdays, during the afternoon hours when skiers "download" from the Mammoth Mountain Ski Area. The Town of Mammoth Lakes General Plan Transportation Element currently contains the following Policy: "Policy 1.7: Establish and maintain a Level of Service D or better on a typical winter Saturday peak-hour for signalized intersections and for primary through movements for unsignalized intersections along arterial and collector roads. This standard is expressly not applied to absolute peak conditions, as it would result in construction of roadway improvements that are warranted only a limited number of days per year and that would unduly impact pedestrian and visual conditions." The LOS thresholds utilized in the General Plan FEIR are defined in terms of delay and are as follows: - 1. <u>For Signalized Intersections:</u> Total intersection LOS D or better must be maintained. Therefore, if a signalized intersection is found to operate at a total intersection LOS E or F, mitigation is required. This same threshold was applied to roundabouts. - 2. For Unsignalized Intersections: In order to avoid the identification of a LOS failure for intersections that result in only a few vehicles experiencing a delay greater than 50 seconds (such as at a driveway serving a few homes that accesses onto a busy street), a LOS deficiency is not identified for all intersections which approach LOS E or F. Instead, a LOS deficiency is assumed to occur at an unsignalized intersection only if an individual
local street movement operates at LOS E or F and total minor approach delay exceeds 4 vehicle hours for a single lane approach and 5 vehicle hours for a multilane approach. In other words, a Morriss 1 8/23/2011 deficiency is found to occur if the average number of vehicles queued over the peak-hour exceeds 4 at a single lane approach, or exceeds 5 at a multilane approach. A vehicle hour is calculated by multiplying the average delay per vehicle during the peak hour by the number of vehicles experiencing that delay. For example, if 100 vehicles exit a roadway and experience an average delay of 20 seconds per vehicle, the vehicle hours of delay for that approach would be 0.6 vehicle hours (100 vehicles X 20 seconds of delay per vehicle / 3600 seconds per hour). Therefore, this threshold not only considers the average delay per vehicle, but also considers how many vehicles experience the delay. As the Town has adopted a standard that applies the LOS D threshold to a typical winter Saturday standard, the exceedance of LOS D on peak winter days during which traffic volumes are higher than the typical winter Saturday would not result in a significant LOS impact. This is typically done to avoid the need to build facilities that are only needed a few hours per year. Areas with uses that have typical peak hours not on Saturday shall be analyzed for the mid-week peak hours. According to *A Policy on Geometric Design of Highways and Streets* (American Association of State Highway and Transportation Officials, 2004): "There are roadways for which there are unusual or highly seasonal fluctuations in traffic flow, such as resort roads on which weekend traffic during a few months of the year far exceeds the traffic during the rest of the year. [For such roads], a design that results in somewhat less satisfactory traffic operation during seasonal periods than on rural roads with normal traffic fluctuations, will generally be acceptable to the public. On the other hand, design should not be so economical that severe congestion results during the peak hours. It may be desirable, therefore, to choose an hourly volume for design, which is about 50 percent of the volumes expected to occur during a few highest hours of the design year..." Applying LOS thresholds to a typical winter Saturday, which result in traffic volumes that are roughly 86 percent of the peak day traffic volumes, is a far more conservative approach than suggested by the *American Association of State Highway and Transportation Officials* in this nationally recognized document. In addition, the level of improvements that would be required by more restrictive LOS standards (such as those based upon a peak day analysis) would result in wider roads, more pavement, and would not fit within the existing character of the Town. Not only would these improvements create a more urban environment, but wider roads make for a less pedestrian friendly environment. Regardless, a limited quantitative evaluation of peak traffic days is provided here. As discussed below, the Town of Mammoth Lakes' use of a typical winter Saturday is consistent with but more conservative (i.e., results in higher design volumes) than the 30th highest hour design period recommended by the American Association of State Highway and Transportation Officials. Figure 1, Daily Variation in Traffic Volumes Along Main Street East of Minaret, in the Mammoth Lakes Transportation Model and LOS Analysis Methodology Paper, prepared by LSC Transportation Consultants, dated May 13, 2005, depicts the variation of traffic volumes along Main Street east of Minaret by day of the week. The Background Paper is contained in Appendix F, Traffic Study, of the Revised Draft Program EIR. As Figure 1 indicates, Saturdays consistently represent the day during which the peak traffic conditions occur. However, on some holiday weekends high traffic volumes may occur on days other than Saturday. For example, as shown in Table 3, 2003/2004 Winter Daily Traffic Volumes Along Main Street East of Minaret Sorted Highest to Lowest, of the Background Paper, the highest traffic volumes usually occur around the Christmas, New Years, President's Day, and Martin Luther King Jr. holidays. Figure 2, Peak-Hour Traffic Volumes Main Street East of Minaret (March 6, 2004), in the Background Paper presents the hourly traffic volume variation along Main Street east of Minaret Road on the day in the 2003/2004 winter season which most closely reflects the design day traffic volume. As Figure 2 indicates, the P.M. peak-hour traffic volumes are usually significantly higher than the A.M. peak-hour traffic volumes. This is mostly attributed to the fact that skiers generally leave the ski area during a smaller time period than they arrive. Therefore, it can be concluded that designing for the P.M. peak hour is appropriate. According to 2003 peak-hour count data provided by Caltrans, some summer days also result in very high traffic volumes throughout Mammoth Lakes. The following summer days ranked within the 30 highest peak-hour traffic volume days along Main Street East of Minaret Road: - July 5, 2003 (three peak hours: 12:00 P.M., 2:00 P.M., and 4:00 P.M.) - August 8, 2003 (two peak hours: 11:00 A.M. and 4:00 P.M.) - August 15, 2003 (4:00 P.M.) - August 30, 2003 (two peak hours: 11:00 A.M. and 12:00 P.M.) However, in general, peak hour traffic volumes are generally highest townwide during the winter season. It is assumed that approximately ten of the 30 highest peak-hour volumes throughout the year on Main Street in Mammoth Lakes occur during the summer, which is a conservative estimate based upon the eight peak hours identified above. It is also assumed that during the winter the P.M. peak-hour traffic volumes are significantly higher than any other hour of the day. Referring to Table 2 and Figure 3, Daily Traffic Volumes along Main Street East of Minaret, in the Background Paper, it can be seen that the design day roughly represents the day during which the 16th highest winter peak-hour traffic volumes occur. Taking into account summer traffic volumes, the design day roughly represents the day during which the 26th highest peak-hour traffic volumes occur, which is more conservative (i.e., results in higher design volumes) than the 30th highest hour design period recommended by the *American Association of State Highway and Transportation Officials*. During these approximately 25 highest hours per year, the design day traffic volumes are exceeded, and LOS may drop below the Town standards. These 25 hours represent 0.3 percent of the hours in a year. Therefore, although the capacity of the roadway may be exceeded for 0.3 percent of the time during the year, traffic volumes will be accommodated by the roadway capacity 99.7 percent of the time. In order to demonstrate traffic conditions that might occur during the 25 hours that result in higher traffic volumes than the design day, some additional LOS analyses were conducted. Referring to Table 2 in the Background Paper, the peak day winter average daily traffic (ADT) is approximately 16 percent higher than the design day ADT. Assuming a similar relationship occurs between the peak hours at all study intersection, it was estimated that on the peak day the peak-hour volume was 16 percent higher than the design day peak-hour volume. Intersection LOS was re-run for the traffic volumes that were 16 percent higher than those generated by the Draft General Plan Update during the design day peak-hour. The results of the analysis indicate that the implementation of the intersection LOS mitigation measures would result in adequate LOS (LOS D or better) at all intersections in the study area under the winter highest peak-hour conditions, with the exception of the US 395/Main Street, Meridian Boulevard/Majestic Pines, Minaret Road/Old Mammoth Road, and US 395 Northbound/Hot Creek Hatchery Road intersections, which would fail under peak conditions. However, these conditions would likely occur for no more than 26 hours per year, or 0.3 percent of the total year. Also, consistent with standard analysis procedures applied in other high snowfall communities, such a Lake Tahoe and the Town of Truckee, LOS and capacity were not adjusted to account for snow conditions. The occurrence of stormy/snowy weather conditions and snow on the roadways actually occurs over a relatively small proportion of the winter. Furthermore, as traffic capacity varies with the specific conditions of a storm, as well as "incidences" such as drivers stopping in travel lanes to adjust chains, identifying a "design condition" to reflect winter storms would largely be speculative. In accordance with Section 15145 in the CEQA Guidelines, if a thorough investigation is unable to resolve an issue and the answer remains purely speculative, then the discussion of the effects of the issue should be terminated. Consistent with Section 15145, since it would be too speculative to analyze the effects of high traffic volumes during heavy snowfall periods, additional design analysis during such conditions is not appropriate. In addition, this approach is consistent with other traffic analyses that LSC has prepared in areas with high annual snowfall, such as the Lake Tahoe region, Park City, Utah, and Aspen, Colorado. Regardless, Figure 1 on the following page (Figure 11 on page 5 of the GPFEIR: Volume II), illustrates the provides an analysis of the correlation between traffic volumes along Main Street east of Minaret Road and precipitation at Mammoth Pass as reported by the California Department of Water Resources. Figure 1 ADT along Main Street East of Minaret Versus Snowfall As the figure indicates, for all the winter days that the Average Daily Traffic (ADT) along Main Street was higher than the design day ADT, the inches of precipitation on Mammoth Pass was less than 0.32 inches, which equates to approximately two inches of snow. In addition, during the top
five snow days, the daily traffic volumes along Main Street were at least 26 percent less than those occurring on the design day. Although it cannot be concluded from this data that high traffic volumes will never occur during days when there is heavy snowfall, it can be concluded that such an event would be rare and it is not appropriate to design for such conditions. Morriss 5 8/23/2011 Peter Bernasconi, Town of Mammoth Lakes Associate Civil Engineer, two inches of precipitation at the weather station at Mammoth Pass equates to approximately one foot of snow in the Town of Mammoth Lakes. # Mammoth Lakes Transportation Model and LOS Analysis Methodology Background Paper LSC Transportation Consultants, Inc. May 13, 2005 This paper is intended to provide a concise summary of the procedures and assumptions used in evaluating traffic conditions in Mammoth Lakes, specifically for the General Plan update and Capital Improvement Programs. First, a general discussion of Level Of Service (LOS) concepts is presented as applied in Mammoth Lakes, followed by a discussion of the transportation modeling process. ### LEVEL OF SERVICE #### **Definition of LOS** The concept of level of service is defined as a qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers. A level-of-service definition generally describes these conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Six levels of service are defined for each type of roadway facility. They are given letter designations, from A to F, with Level of Service A representing the best operating conditions and Level of Service F the worst. In general, the various levels of service are defined as follows for roadways (away from intersections): - Level of Service A represents free flow. Individual drivers are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speeds and to maneuver within the traffic stream is extremely high. The general level of comfort and convenience provided to the motorist, passenger, or pedestrian is excellent. - Level of Service B is in the range of stable flow, but the presence of other users in the traffic stream begins to be noticeable. Freedom to select desired speeds is relatively unaffected, but there is a slight decline in the freedom to maneuver within the traffic stream from LOS A. The level of comfort and convenience provided is somewhat less than at LOS A, because the presence of others in the traffic stream begins to affect individual behavior. - Level of Service C is in the range of stable flow, but marks the beginning of the range of flow in which the operation of individual drivers becomes significantly affected by interactions with others in the traffic stream. The selection of speed is now affected by the presence of others, and maneuvering within the traffic stream requires substantial vigilance on the part of the user. The general level of comfort and convenience declines noticeably at this level. - Level of Service D represents high-density, but stable, flow. Speed and freedom to maneuver are severely restricted, and the driver experiences a generally poor level of comfort and convenience. Small increases in traffic flow will generally cause operational problems at this level. - Level of Service E represents operating conditions at or near the capacity level. All speeds are reduced to a low, but relatively uniform value. Freedom to maneuver within the traffic stream is extremely difficult, and it is generally accomplished by forcing a vehicle or pedestrian to "give way" to accommodate such maneuvers. Comfort and convenience levels are extremely poor, and driver or pedestrian frustration is generally high. Operations at this level are usually unstable, because small increases in flow or minor perturbations within the traffic stream will cause breakdowns. - Level of Service F is used to define forced or breakdown flow. This condition exists wherever the amount of traffic approaching a point exceeds the amount which can traverse the point. Queues form behind such locations. Operations within the queue are characterized by stop-and-go waves, and they are extremely unstable. Vehicles may progress at reasonable speeds for several hundred feet or more, then be required to stop in a cyclic fashion. Level of Service F is used to describe the operating conditions within the queue, as well as the point of the breakdown. It should be noted, however, that in many cases operating conditions of vehicles or pedestrians discharged from the queue may be quite good. Nevertheless, it is the point at which arrival flow exceeds discharge flow which causes the queue to form, and Level of Service F is an appropriate designation for such points. The LOS resulting from different levels of vehicle control delay, as identified in the Highway Capacity Manual, are shown in Table 1. Control delay is the total time that elapses between the vehicle joining the queue and its departure from the head of the queue <u>plus</u> the time required to decelerate to a stop and to accelerate to free-flow speed. The delays identified in the table relate the perception of the driver in the amount they are delayed at an intersection to LOS. #### **LOS Standards** The Town of Mammoth Lakes General Plan Transportation Element, adopted in 2001, currently contains the following Policy: **Policy 1.7:** Establish and maintain a Level of Service D or better on a typical winter Saturday peak-hour for signalized intersections and for primary through movements for unsignalized intersections along arterial and collector roads. This standard is expressly not applied to absolute peak conditions, as it would result in construction of roadway improvements that are warranted only a limited number of days per year and that would unduly impact pedestrian and visual conditions. Therefore, the following LOS thresholds were applied in the General Plan traffic analysis: - 1. For Signalized Intersections: Total intersection LOS D or better must be maintained. Therefore, if a signalized intersection is found to operate at a total intersection LOS E or F, mitigation is required. It is assumed that this same threshold applies to roundabouts. - 2. For Unsignalized Intersections: In order to avoid intersection the identification of a LOS failure for intersections that result in only a few vehicles experience a delay greater than 50 seconds (such as at a driveway serving a few homes that accesses onto a busy street), a LOS deficiency is not identified for all intersections with approach LOS E or F. Instead, a LOS deficiency is assumed to occur at an unsignalized intersection only if an individual minor street movement operates at LOS E or F and total minor approach delay exceeds 4 vehicle hours for a single lane approach and 5 vehicle hours for a multi lane approach. In other words, a deficiency is found to occur if the average number of vehicles queued over the peak-hour exceeds 4 at a single lane approach, or exceeds 5 at a multilane approach. # Comparison with Other Jurisdiction LOS Standards As shown in Table 2, Mammoth Lakes LOS policy is in line with many jurisdictions within California. Some more rural areas (such have Amador and Siskiyou Counties) have a "higher" LOS C standard, while other areas have a lower LOS E standard in some areas. The Town of Mammoth Lakes is probably most comparable to the Town of Truckee in its population and its high level of tourist visitation during both the summer and winter: Mammoth Lake's LOS D thresholds are more stringent than the Town of Truckee's in that a LOS E is permitted in the Truckee downtown area. ## Impacts Associated with a More Restrictive (Higher) LOS In considering an appropriate LOS standard, it is useful to identify how changing the standard would impact the need for roadway improvements (with the attendant impacts on community character). The impact of the Town changing their LOS policy to a more restrictive (higher) LOS would be that more intersections and roadways would require improvements by 2025, and those already identified as needing improvements by 2025 would require improvements sooner. For comparison purposes, assume the Town adopted a LOS B standard. The following intersections, which are currently identified to operate at adequate LOS under 2004 conditions, would need to be expanded to attain a LOS B standard: - Lakeview Road/Lake Mary Road - Minaret Road/Main Street - Old Mammoth Road/Main Street - US 395 Northbound/Main Street (SR 203) - Minaret Road/Old Mammoth Road - Minaret Road/Meridian Road In addition, the following intersections, which are currently forecast to operate at adequate LOS by 2025, would need to be expanded to attain a LOS B standard: - Old Mammoth Road/Main Street - Sierra Park Road/Main Street - US 395 Northbound/Main Street (SR 203) - Old Mammoth Road/Meridian Boulevard - US 395 Southbound/Hot Creek Fish Hatchery Road As for those intersections that have already been identified as requiring mitigation by 2025, additional improvements would be required to maintain a LOS B over the next 20 years. For example, the Minaret Road/Main Street intersection would need the following additional lanes by 2024 if the LOS B standard were adopted: - Northbound Approach: Add Second Through Lane. - Southbound Approach: Add Two Through Lanes and Separate Right-Turn Lane and Remove Shared Through/Right Lane. - Eastbound Approach: Add Second Left-Turn Lane and Second Through Lane. - Westbound Approach: Add Second Left-Turn Lane and Second Through Lane. In total, Main Street through this intersection would need to be expanded by one through lane in each direction, and Minaret Road expanded by one though lane in each direction. As another example, the Minaret Road/Meridian Boulevard intersection would need the following additional
lanes by 2024 if the LOS B standard were adopted: - Northbound Approach: Add Two Through Lanes and a Separate Right-Turn Lane and Remove Through/Right Shared Lane. - Southbound Approach: Add Two Through Lanes and a Separate Right-Turn Lane and Remove Through/Right Shared Lane. - Eastbound Approach: Add Second Left-Turn Lane, Second Through Lane, Separate Right-Turn Lane and Remove Through/Right Shared Lane. - Westbound Approach: Add Second Through Lane, Separate Right-Turn Lane and Remove Through/Right Shared Lane. This would add a total of one through lane in each direction on Minaret Road. Furthermore, Minaret Road through the Village area would need to be widened to a total of four lanes (two lanes in each direction). The level of improvements that would be required by more restrictive LOS standards would result in wider roads, more pavement, and would not fit within the existing character of the Town. Not only would these improvements create an urban environment, but wider roads make for a less pedestrian-friendly environment. The substantial impacts of roadway improvements needed to attain a high LOS is the reason why the majority of urban and resort communities have adopted LOS standards at or near D. # TRAFFIC MODEL ## **Model Design Day** A crucial step in development of a traffic model is collecting and refining a comprehensive set of existing design volumes. The existing Town of Mammoth Lakes Transportation Demand Model is based upon a typical winter Saturday P.M. peak-hour design period, defined as the average winter Saturday peak hour. The traffic volumes throughout the Town of Mammoth Lakes vary greatly by time of day, day of week and, more importantly, by season. Particularly in areas with these high variation in traffic levels, it is important to decide what hourly traffic volumes should be used as the basis of design. To avoid the development of facilities that are only needed a relatively few days per year, the traffic engineering profession has adopted a standard procedure of basing roadway design on volumes slightly below the absolute peak volumes. For this reason the Town of Mammoth Lakes, for example, has focused most of its design policies on a typical Winter Saturday peak hour, rather than the highest winter peak hour. A <u>Policy on Geometric Design of Highways and Streets</u> (American Association of State Highway and Transportation Officials, 2001) indicates "The design hourly volume for rural highways ... should generally be the 30th highest volume of the future year chosen for design." (P 61). It is true that during winter peak periods, traffic volumes occasionally exceed the intersection and roadway capacity. However, to avoid the development of facilities that are only needed a relatively few days per year, the typical winter Saturday peak hour was analyzed, which is consistent with standard engineering design practice. The use of a 10th or 30th highest design hour is common practice in many resort communities. For example, in the Town of Truckee the 10th highest <u>summer</u> peak hour is used. In addition, in Truckee, peak ski traffic volumes occurring during the winter are not designed for at all. In Placer County, the winter design day represents the 30th highest winter peak hour. As part of a recent traffic analysis prepared the development of Kings Beach, the 10th highest summer peak hour was used, which was determined appropriate by Caltrans, Placer County, and the Tahoe Regional Planning Agency. Figure 1 depicts the variation of traffic volumes along Main Street east of Minaret by day of the week. As the figure indicate, Saturdays consistently represent the day during which the peak traffic conditions occur. Of course, on some holiday weekends high traffic volumes may occur on days other than Saturday. As shown in Table 3, for example, the highest traffic volumes usually occur around the Christmas, New Years, President's Day, and Martin Luther King Jr. holidays. Figure 2 presents the hourly traffic volume variation along Main Street east of Minaret Road on the day in the 2003/2004 winter season which most closely reflects the design day traffic volume. As the figure indicates, the P.M. peak-hour traffic volumes are usually significantly higher than the A.M. peak-hour traffic volumes. This is mostly attributed to the fact that skiers generally leave the ski area during a smaller time frame than they arrive. Therefore, it can be concluded that designing for the P.M. peak hour is appropriate. According to 2003 peak-hour count data provided by Caltrans, some summer days also result in very high traffic volumes throughout Mammoth Lakes. In fact, the following days ranked within the 30 highest peak-hour traffic volume days along Main Street East of Minaret Road: - July 5, 2003 (three peak hours: 12:00 P.M., 2:00 P.M., and 4:00 P.M.) - August 8, 2003 (two peak hours: 11:00 A.M. and 4:00 P.M.) - August 15, 2003 (4:00 P.M.) - August 30, 2003 (two peak hours: 11:00 A.M. and 12:00 P.M.) However, in general, traffic volumes are generally highest Townwide during the winter season. It can be assumed that approximately 10 of the highest peak-hour volumes on Main Street in Mammoth Lakes occur during the summer. It is also assumed that during the winter the P.M. peak-hour traffic volume is significantly higher than any other hour of the day. Referring to Table 3 and Figure 3, it can be seen that the design day roughly represents the day during which the 16th highest winter peak-hour traffic volumes occur. Taking into account summer traffic volumes, the design day roughly represents the day during which the 26th highest peak-hour traffic volumes occur. Therefore, the Town of Mammoth Lakes' use of a typical winter Saturday is consistent with but more conservative (i.e., results in higher design volumes) than AASHTO's recommended 30th highest hour. In addition, it can be said that during approximately 25 hours per year, the design day traffic volumes are exceeded, and LOS may drop below the Town standards. These 25 hours represent 0.3 percent of the hours in a year. Therefore, although the capacity of the roadway may be exceeded for 0.3 percent of the time during the year, traffic volumes will be accommodated by the roadway capacity 99.7 percent of the time. It should also be noted that, consistent with standard analysis procedures elsewhere, Level of Service and capacity was not adjusted to account for snow conditions. The occurrence of stormy/snowy weather conditions and snow on the roadways actually occurs over a relatively small proportion of the winter (though the last winter might make it seem otherwise). Furthermore, as traffic capacity varies with the specific conditions of a storm as well as "incidences" such as drivers stopping in travel lanes to adjust chains, identifying a "design condition" to reflect winter storms would largely be conjecture. This approach is consistent with other traffic analyses that LSC has prepared in areas with high annual snowfall, such as the Lake Tahoe region, Park City Utah, and Aspen Colorado. #### Overview of Traffic Model A transportation demand model is a computerized representation of a transportation system. A model is useful for comparing the impacts of various growth assumptions and for evaluating alternative transportation improvement programs. Although it would also be possible to use growth factors based on the recent trends to project future traffic volumes, a model allows the use of better projections of growth within the region, accounting for subarea development. Computerized transportation models are also the best means by which to evaluate the interchange of traffic between various land uses and to consider the effects of traffic congestion on travel times and driver route choice. Transportation models, by definition, are representations of travel choices made by individuals across a geographic area, impacting physical structures such as roads, bridges, parking areas, and intersections. Each model should rely on sound behavioral theory of how individuals make travel choices. The structure of choice sequences suggested by the model and the variables used in the model should reflect a logical process of decision-making followed by travelers in deciding when, where, and how to travel. The travel choices of individuals are most commonly represented in the United States by what is referred to as the "four-step process." These four steps represent the thought processes of the individual. The individual makes four travel decisions, as follows: (1) the decision that a trip is necessary to fulfill some need or purpose (generation), (2) the decision where that need/purpose is best fulfilled (distribution), (3) the decision of which means is best to get there (mode choice), and (4) the decision of which route to take (trip assignment). Geographic patterns are represented in the model by data considered to be at the heart of individual travel decisions: where people live, where people work, and where people recreate, shop, or otherwise interact. Land use quantities are represented in a series of Traffic Analysis Zones (TAZs), that together encompass the entire traffic model area. A total of 152 TAZs were defined to encompass the model area. TAZs were generally defined to follow property lines and to accurately reflect vehicular access to/from the roadway network. As discussed in detail below, land use quantities were developed to reflect existing uses within each TAZ. The physical structures of travel are represented through a combination of links (paths) and nodes (intersections or transfer points). Zone centroids are special types of nodes associated with both the TAZ data mentioned above and the origins and destinations of an individual's trips. The links typically have a travel time associated with them, either explicitly given or inferred from speed and distance information. ## Trip Generation Trip ends are classified as being either a
production (defined as either end of a home-based trip or origin of a non-home based trip) or an attraction (the non-home end of a home-based trip or the destination end of a non-home based trip). Separate models are typically used to predict productions and attractions. Variables used as predictors of trip productions usually include information regarding household income, auto ownership, number of workers per household, residential density, and distance of zone from the central business district. Trip attraction predictors usually include zonal employment levels, zonal floor space, and/or accessibility to the work force. # Trip Distribution Trip distribution is the process of connecting the trip ends which have been generated for each of the analysis areas or TAZs. It is during this step that the linkage is made between all the trip productions and attractions. Trip distribution is a significant element of the process because the trips between zones (trip interchanges) must eventually be accommodated by the transportation system. The distribution of trips is essential to estimating the traffic volumes on individual links and determining a level of service. ## Mode Split Mode split is the process that converts person trips into different modes. The Mammoth Lake Traffic Model mode split is used to turn person trips into vehicle or transit trips. The mode split estimates by the model is shown in Table 4. As the table indicates, 8 to 11 percent of the model-generated trips are assumed to occur on transit over the course of a typical winter Saturday. Note that mode split for skiers traveling to and from the Mammoth Mountain portals is substantially higher – on the order of 30 percent – which is also reflected in the model. ## Trip Assignment Trip assignment models are used to estimate traffic flow on the network, using the origin-destination pairs generated in trip distribution. The assignment of trips to the network relies on the determination of routes through the network based on the impedance or travel time of each link. #### **Model Validation** As with any representation of a real system, there are associated limitations. To minimize the effects of these limitations, the updated model has been "validated" so that it matches reality for all critical links in the system. In other words, adjustments were made until the modeled traffic volumes approximated existing traffic volumes, often referred to as "ground counts." Once the model was validated, then and only then can the model be used to estimate future travel patterns and volumes. To validate the model, the results of the model traffic assignments were compared to the observed traffic volumes. The approach to the validation process is to conduct a point validation analysis. Point validation represents a higher standard for calibration than is typically used. Not only are overall flows of traffic volumes compared, but also site-specific volumes. A calibrated model should provide results which are reasonably close for major links in the street network. Table 5 shows the two-way volume error range which was used in validating the model. For low-volume links, a larger error range is acceptable because of the lack of congestion. A difference of 100 percent for volumes less than 100 vehicles per hour has little effect on congestion because less roadway capacity is being used. For higher volume roadways, the percentage error must be much smaller. The traffic model was validated for all 36 locations evaluated. Caltrans has established several standards for the validation of traffic models, as established in <u>Travel Forecasting Guidelines</u> (California Department of Transportation, November 1992). Two examples of these standards are applied to the Mammoth Lakes Model as follows: - A minimum of 75 percent of the roadway links should be within their maximum desirable deviation, which ranges from approximately 5 to 60 percent depending on total volume. As the Caltrans standards are meant to be applied to models which generally do not contain local collectors, such as the Mammoth Model does, the maximum percent desirable deviation identified in Table 5 was assumed to be more appropriate than those identified in the Caltrans model. Using these percent deviations, the Mammoth Lakes Model results indicate that 100 percent of the link volumes evaluated are within the acceptable error ranges, substantially exceeding Caltrans' 75 percent standard. - The model-wide correlation coefficient should be greater than 0.88. The Mammoth Lakes Model traffic model results indicate a correlation coefficient of 0.99, substantially exceeding Caltrans' standard. - The maximum acceptable Root Mean Square Error (RMSE) should not exceed 40 percent. The Mammoth Lakes Model model results in a RSME equal to 11 percent, substantially exceeding Caltrans's 40 percent standard. ## **Future Model Assumptions** The land uses assumptions that were used in the model runs were developed by Mammoth Lakes Transportation Planning Staff. Four 2024 land use alternatives were evaluated. No new roadways were assumed to be built between 2004 and 2024. It should be noted that any community-wide traffic model is a planning level "tool" and necessarily reflects a simplification of the roadway network, individual property access, and land uses. Detailed evaluation of individual roadway elements based upon specific project site plans, therefore, may yield differing results. The model, however, is more than adequate for purposes of overall planning for Mammoth Lakes transportation network, and meets or exceeds the standards of the traffic engineering profession. Table 1: Level of Service Delay Criteria for Signalized and Unsignalized Intersections | | Control Delay per Vehicle (seconds) | | | | |------------------|-------------------------------------|----------------------------|--|--| | Level Of Service | Signalized Intersections | Unsignalized Intersections | | | | Α | <= 10 | <= 10 | | | | В | > 10 and <= 20 | > 10 and <= 15 | | | | С | > 20 and <= 35 | > 15 and <= 25 | | | | D | > 35 and <= 55 | > 25 and <= 35 | | | | E | > 55 and <= 80 | > 35 and <= 50 | | | | F | > 80 | > 50 | | | Source: 2000 Highway Capacity Manual. Table 2: Level of Service Standards for Rural Jurisdictions by Roadway Classification | | Minimum Level of Service Standard | | | | | | | | | |---------------------------|-----------------------------------|--------------------|----------------------|----------------|--------------------|------------------------|------------------------|---|----------| | Roadway
Classification | Mammoth
Lakes | Tuolumne
County | Amador
County (1) | Lake
County | Siskiyou
County | El Dorado
County | Nevada
County | Town of Truckee | TRPA (3) | | State Highways | D | E | C/D | С | С | E (urban)
D (rural) | D (urban)
C (rural) | D, except E
within Downtown
area. | D | | Arterial | D | C ⁽²⁾ | C/D | С | С | E (urban)
D (rural) | D (urban)
C (rural) | D, except E within Downtown area. | D | | Collector | D | B ⁽²⁾ | С | С | С | E (urban)
D (rural) | D (urban)
C (rural) | D, except E within Downtown area. | D | | Local Roads | D | B (2) | С | С | С | E (urban)
D (rural) | D (urban)
C (rural) | D, except E
within Downtown
area. | D | Note 1: Major intersections with a 15 minute peak period of LOS D is allowed. Certain state highway road segments are also allowed LOS D. Note 2: One LOS standard lower is allowed within 1/2 mile of intersections with major collectors and arterial highways. For example, in Tuolumne County LOS B is required along all collectors, excepting those within 1/2 mile of a major collector or arterial highway, for which a LOS C must be maintained. Note 3: LOS E is allowed at signalized intersections for no more than 4 hours per day. Source: County planning documents. Table 3: 2003/2004 Winter Daily Traffic Volumes Along Main Street East of Mil from Highest to Lowest 14-Feb-04 31-Dec-03 15-Feb-04 17-Jan-04 24-Jan-04 25-Dec-03 27-Dec-03 28-Feb-04 31-Jan-04 22-Dec-03 16-Jan-04 30-Dec-03 30-Jan-04 Sustandray Wednesd Sunday Sustandray Sustandray Sustandray Sustandray Sustandray Sustandray Sustandray Friday Friday Friday Sustandray Monday Friday Sustandray Monday Friday Sustandray Sustandray Friday Sustandray Sustandray Sustandray Friday Sustandray Friday Sustandray Sus
8,743,858,841, 9,642,6 9,644,6 9,6 17, 78-6 17, 78-6 17, 78-6 17, 78-6 17, 78-6 17, 78-7 18, 48-7 18, 48-7 18, 48-7 18, 48-7 18, 48-7 18, 48-7 18, 58-7 18, 23. Jan-04 23. Jan-04 34. Jan-04 35. Jan-04 36. Feb-04 36. Feb-04 38. Dec-03 39. Jan-04 39. Dec-03 307. Mar-04 307. Jan-04 3 Table 4: Transit Mode Split Estimated by Mammoth Model by Land Use Alternative | | | | Total Daily | | | | |---------------------------------|------------------------|----------------------------|-------------|--------------------|-----------------------------|--| | Alternative | Off-Peak Transit Trips | Peak-Hour Transit
Trips | { | Total Person Trips | Mode Split (%
Using Bus) | | | 2004 | 10,988 | 1,680 | 12,668 | 165,626 | 7.65% | | | 2025 Build Out of Alternative 1 | 20,620 | 3,328 | 23,948 | 295,360 | 8.11% | | | 2025 Build Out of Alternative 2 | | 4,845 | 33,054 | 316.288 | 10.45% | | | 2025 Build Out of Alternative 3 | | 3,619 | 26,128 | 315,401 | 8.28% | | | 2025 Build Out of Alternative 4 | 18,913 | 3,040 | 21.953 | 267.040 | 8.22% | | Note: This mode split represents the mode split for all trips in the Mammoth Transportation Demand Model and not just skier trips. Mode Split.wb3 | Table 5
Point Validation Error Range | | | | | |---|----------------------------------|--|--|--| | Peak Hour Two-Way
Traffic Volumes | Error Range + (-) | | | | | <100
100-399
400-999
1,000-1,500
>1,500 | 100%
50%
25%
15%
10% | | | |